Engelmann, Nicolai ; Koeppl, Heinz (2022)
Forward-Backward Latent State Inference for Hidden Continuous-Time semi-Markov Chains.
36th Conference on Neural Information Processing Systems (NeurIPS 2022). New Orleans, USA (28.11.-09.12.2022)
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
Hidden semi-Markov Models (HSMM's)-while broadly in use-are restricted to a discrete and uniform time grid. They are thus not well suited to explain often irregularly spaced discrete event data from continuous-time phenomena. We show that non-sampling-based latent state inference used in HSMM's can be generalized to latent Continuous-Time semi-Markov Chains (CTSMC's). We formulate integro-differential forward and backward equations adjusted to the observation likelihood and introduce an exact integral equation for the Bayesian posterior marginals and a scalable Viterbi-type algorithm for posterior path estimates. The presented equations can be efficiently solved using well-known numerical methods. As a practical tool, variable-step HSMM's are introduced. We evaluate our approaches in latent state inference scenarios in comparison to classical HSMM's.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2022 |
Autor(en): | Engelmann, Nicolai ; Koeppl, Heinz |
Art des Eintrags: | Bibliographie |
Titel: | Forward-Backward Latent State Inference for Hidden Continuous-Time semi-Markov Chains |
Sprache: | Englisch |
Publikationsjahr: | 31 Oktober 2022 |
Veranstaltungstitel: | 36th Conference on Neural Information Processing Systems (NeurIPS 2022) |
Veranstaltungsort: | New Orleans, USA |
Veranstaltungsdatum: | 28.11.-09.12.2022 |
URL / URN: | https://openreview.net/forum?id=IRSyuxfYNb |
Kurzbeschreibung (Abstract): | Hidden semi-Markov Models (HSMM's)-while broadly in use-are restricted to a discrete and uniform time grid. They are thus not well suited to explain often irregularly spaced discrete event data from continuous-time phenomena. We show that non-sampling-based latent state inference used in HSMM's can be generalized to latent Continuous-Time semi-Markov Chains (CTSMC's). We formulate integro-differential forward and backward equations adjusted to the observation likelihood and introduce an exact integral equation for the Bayesian posterior marginals and a scalable Viterbi-type algorithm for posterior path estimates. The presented equations can be efficiently solved using well-known numerical methods. As a practical tool, variable-step HSMM's are introduced. We evaluate our approaches in latent state inference scenarios in comparison to classical HSMM's. |
Freie Schlagworte: | forward-backward, continuous time, hsmm, ctsmc, semi-Markov, latent state inference, sample-free posterior latent state inference in hidden continuous-time semi-Markov chains |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Self-Organizing Systems Lab |
Hinterlegungsdatum: | 04 Apr 2024 11:14 |
Letzte Änderung: | 04 Jul 2024 08:33 |
PPN: | 519572394 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |