TU Darmstadt / ULB / TUbiblio

Forward-Backward Latent State Inference for Hidden Continuous-Time semi-Markov Chains

Engelmann, Nicolai ; Koeppl, Heinz (2022)
Forward-Backward Latent State Inference for Hidden Continuous-Time semi-Markov Chains.
36th Conference on Neural Information Processing Systems (NeurIPS 2022). New Orleans, USA (28.11.-09.12.2022)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Hidden semi-Markov Models (HSMM's)-while broadly in use-are restricted to a discrete and uniform time grid. They are thus not well suited to explain often irregularly spaced discrete event data from continuous-time phenomena. We show that non-sampling-based latent state inference used in HSMM's can be generalized to latent Continuous-Time semi-Markov Chains (CTSMC's). We formulate integro-differential forward and backward equations adjusted to the observation likelihood and introduce an exact integral equation for the Bayesian posterior marginals and a scalable Viterbi-type algorithm for posterior path estimates. The presented equations can be efficiently solved using well-known numerical methods. As a practical tool, variable-step HSMM's are introduced. We evaluate our approaches in latent state inference scenarios in comparison to classical HSMM's.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Engelmann, Nicolai ; Koeppl, Heinz
Art des Eintrags: Bibliographie
Titel: Forward-Backward Latent State Inference for Hidden Continuous-Time semi-Markov Chains
Sprache: Englisch
Publikationsjahr: 31 Oktober 2022
Veranstaltungstitel: 36th Conference on Neural Information Processing Systems (NeurIPS 2022)
Veranstaltungsort: New Orleans, USA
Veranstaltungsdatum: 28.11.-09.12.2022
URL / URN: https://openreview.net/forum?id=IRSyuxfYNb
Kurzbeschreibung (Abstract):

Hidden semi-Markov Models (HSMM's)-while broadly in use-are restricted to a discrete and uniform time grid. They are thus not well suited to explain often irregularly spaced discrete event data from continuous-time phenomena. We show that non-sampling-based latent state inference used in HSMM's can be generalized to latent Continuous-Time semi-Markov Chains (CTSMC's). We formulate integro-differential forward and backward equations adjusted to the observation likelihood and introduce an exact integral equation for the Bayesian posterior marginals and a scalable Viterbi-type algorithm for posterior path estimates. The presented equations can be efficiently solved using well-known numerical methods. As a practical tool, variable-step HSMM's are introduced. We evaluate our approaches in latent state inference scenarios in comparison to classical HSMM's.

Freie Schlagworte: forward-backward, continuous time, hsmm, ctsmc, semi-Markov, latent state inference, sample-free posterior latent state inference in hidden continuous-time semi-Markov chains
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Self-Organizing Systems Lab
Hinterlegungsdatum: 04 Apr 2024 11:14
Letzte Änderung: 04 Jul 2024 08:33
PPN: 519572394
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen