TU Darmstadt / ULB / TUbiblio

The TYC Dataset for Understanding Instance-Level Semantics and Motions of Cells in Microstructures

Reich, Christoph ; Prangemeier, Tim ; Koeppl, Heinz (2023)
The TYC Dataset for Understanding Instance-Level Semantics and Motions of Cells in Microstructures.
International Conference on Computer Vision (ICCV 2023). Paris, France (02.-06.10.2023)
doi: 10.1109/ICCVW60793.2023.00426
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Segmenting cells and tracking their motion over time is a common task in biomedical applications. However, predicting accurate instance-wise segmentation and cell motions from microscopy imagery remains a challenging task. Using microstructured environments for analyzing single cells in a constant flow of media adds additional complexity. While large-scale labeled microscopy datasets are available, we are not aware of any large-scale dataset, including both cells and microstructures. In this paper, we introduce the trapped yeast cell (TYC) dataset, a novel dataset for understanding instance-level semantics and motions of cells in microstructures. We release 105 dense annotated high-resolution brightfield microscopy images, including about 19k instance masks. We also release 261 curated video clips composed of 1293 high-resolution microscopy images to facilitate unsupervised understanding of cell motions and morphology. TYC offers ten times more instance annotations than the previously largest dataset, including cells and microstructures. Our effort also exceeds previous attempts in terms of microstructure variability, resolution, complexity, and capturing device (microscopy) variability. We facilitate a unified comparison on our novel dataset by introducing a standardized evaluation strategy. TYC and evaluation code are publicly available under CC BY 4.0 license.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2023
Autor(en): Reich, Christoph ; Prangemeier, Tim ; Koeppl, Heinz
Art des Eintrags: Bibliographie
Titel: The TYC Dataset for Understanding Instance-Level Semantics and Motions of Cells in Microstructures
Sprache: Englisch
Publikationsjahr: 23 Dezember 2023
Verlag: IEEE
Buchtitel: Proceedings: 2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW 2023)
Veranstaltungstitel: International Conference on Computer Vision (ICCV 2023)
Veranstaltungsort: Paris, France
Veranstaltungsdatum: 02.-06.10.2023
DOI: 10.1109/ICCVW60793.2023.00426
Kurzbeschreibung (Abstract):

Segmenting cells and tracking their motion over time is a common task in biomedical applications. However, predicting accurate instance-wise segmentation and cell motions from microscopy imagery remains a challenging task. Using microstructured environments for analyzing single cells in a constant flow of media adds additional complexity. While large-scale labeled microscopy datasets are available, we are not aware of any large-scale dataset, including both cells and microstructures. In this paper, we introduce the trapped yeast cell (TYC) dataset, a novel dataset for understanding instance-level semantics and motions of cells in microstructures. We release 105 dense annotated high-resolution brightfield microscopy images, including about 19k instance masks. We also release 261 curated video clips composed of 1293 high-resolution microscopy images to facilitate unsupervised understanding of cell motions and morphology. TYC offers ten times more instance annotations than the previously largest dataset, including cells and microstructures. Our effort also exceeds previous attempts in terms of microstructure variability, resolution, complexity, and capturing device (microscopy) variability. We facilitate a unified comparison on our novel dataset by introducing a standardized evaluation strategy. TYC and evaluation code are publicly available under CC BY 4.0 license.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Self-Organizing Systems Lab
Hinterlegungsdatum: 04 Apr 2024 10:10
Letzte Änderung: 18 Jul 2024 12:58
PPN: 519995600
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen