TU Darmstadt / ULB / TUbiblio

Multiscale modeling of functionally graded shell lattice metamaterials for additive manufacturing

Shojaee, Mohammad ; Valizadeh, Iman ; Klein, Dominik K. ; Sharifi, P. ; Weeger, Oliver (2024)
Multiscale modeling of functionally graded shell lattice metamaterials for additive manufacturing.
In: Engineering with Computers, 2023
doi: 10.26083/tuprints-00026475
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

In this work, an experimentally validated multiscale modeling framework for additively manufactured shell lattice structures with graded parameters is introduced. It is exemplifed in application to the Schwarz primitive triply periodic minimal surface microstructure and 3D printing using masked stereolithography of a photopolymer material. The systematic procedure starts with the characterization of a hyperelastic material model for the 3D printed material. This constitutive model is then employed in the fnite element simulation of shell lattices at fnite deformations. The computational model is validated with experimental compression tests of printed lattice structures. In this way, the numerical convergence behavior and size dependence of the model are assessed, and the range in which it is reasonable to assume linear elastic behavior is determined. Then, representative volume elements subject to periodic boundary conditions are simulated to homogenize the mechanical behavior of Schwarz primitives with varying aspect ratios and shell thicknesses. Subsequently, the parameterized efective linear elasticity tensor of the metamaterial is represented by a physics-augmented neural network model. With this constitutive model, functionally graded shell lattice structures with varying microstructural parameters are simulated as macroscale continua using fnite element and diferential quadrature methods. The accuracy, reliability and efectiveness of this multiscale simulation approach are investigated and discussed. Overall, it is shown that this experimentally validated multiscale simulation framework, which is likewise applicable to other shell-like metamaterials, facilitates the design of functionally graded structures through additive manufacturing.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Shojaee, Mohammad ; Valizadeh, Iman ; Klein, Dominik K. ; Sharifi, P. ; Weeger, Oliver
Art des Eintrags: Zweitveröffentlichung
Titel: Multiscale modeling of functionally graded shell lattice metamaterials for additive manufacturing
Sprache: Englisch
Publikationsjahr: 20 Februar 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2023
Ort der Erstveröffentlichung: London
Verlag: Springer
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Engineering with Computers
Kollation: 18 ungezählte Seiten
DOI: 10.26083/tuprints-00026475
URL / URN: https://tuprints.ulb.tu-darmstadt.de/26475
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

In this work, an experimentally validated multiscale modeling framework for additively manufactured shell lattice structures with graded parameters is introduced. It is exemplifed in application to the Schwarz primitive triply periodic minimal surface microstructure and 3D printing using masked stereolithography of a photopolymer material. The systematic procedure starts with the characterization of a hyperelastic material model for the 3D printed material. This constitutive model is then employed in the fnite element simulation of shell lattices at fnite deformations. The computational model is validated with experimental compression tests of printed lattice structures. In this way, the numerical convergence behavior and size dependence of the model are assessed, and the range in which it is reasonable to assume linear elastic behavior is determined. Then, representative volume elements subject to periodic boundary conditions are simulated to homogenize the mechanical behavior of Schwarz primitives with varying aspect ratios and shell thicknesses. Subsequently, the parameterized efective linear elasticity tensor of the metamaterial is represented by a physics-augmented neural network model. With this constitutive model, functionally graded shell lattice structures with varying microstructural parameters are simulated as macroscale continua using fnite element and diferential quadrature methods. The accuracy, reliability and efectiveness of this multiscale simulation approach are investigated and discussed. Overall, it is shown that this experimentally validated multiscale simulation framework, which is likewise applicable to other shell-like metamaterials, facilitates the design of functionally graded structures through additive manufacturing.

Freie Schlagworte: Metamaterials, Functionally graded materials, Multiscale modeling, Physics-augmented machine learning, Additive manufacturing
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-264758
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet Cyber-Physische Simulation (CPS)
Hinterlegungsdatum: 20 Feb 2024 08:32
Letzte Änderung: 21 Feb 2024 06:23
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen