TU Darmstadt / ULB / TUbiblio

Spatial inference via multiple hypothesis testing

Gölz, Martin (2024)
Spatial inference via multiple hypothesis testing.
In: Science Talks, 9
doi: 10.1016/j.sctalk.2024.100313
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The identification of the spatial regions of interesting, different, or anomalous signal behavior is a central task in many applications. Evidence about the signal state in different locations can be gathered by large-scale heterogeneous wireless sensor networks. Efficient extraction, exchange and fusion of the local information from the nodes are essential while operating in the congested radio frequency spectrum and to ensure long sensor battery lifetime. Our proposed spatial inference methods are based on multiple hypothesis testing. They allow to control the accuracy of the estimated areas of anomalous signal behavior in terms of false positives. All required statistical models are learned from the data, which makes our methods applicable to a wide range of practical problems.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Gölz, Martin
Art des Eintrags: Bibliographie
Titel: Spatial inference via multiple hypothesis testing
Sprache: Englisch
Publikationsjahr: März 2024
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Science Talks
Jahrgang/Volume einer Zeitschrift: 9
DOI: 10.1016/j.sctalk.2024.100313
Kurzbeschreibung (Abstract):

The identification of the spatial regions of interesting, different, or anomalous signal behavior is a central task in many applications. Evidence about the signal state in different locations can be gathered by large-scale heterogeneous wireless sensor networks. Efficient extraction, exchange and fusion of the local information from the nodes are essential while operating in the congested radio frequency spectrum and to ensure long sensor battery lifetime. Our proposed spatial inference methods are based on multiple hypothesis testing. They allow to control the accuracy of the estimated areas of anomalous signal behavior in terms of false positives. All required statistical models are learned from the data, which makes our methods applicable to a wide range of practical problems.

Zusätzliche Informationen:

Art.No.: 100313

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Signalverarbeitung
Hinterlegungsdatum: 05 Mär 2024 15:39
Letzte Änderung: 23 Mai 2024 16:35
PPN: 518554104
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen