TU Darmstadt / ULB / TUbiblio

Combinatorial acyclicity models for potential‐based flows

Habeck, Oliver ; Pfetsch, Marc E. (2021)
Combinatorial acyclicity models for potential‐based flows.
In: Networks, 79 (1)
doi: 10.1002/net.22038
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Potential‐based flows constitute a basic model to represent physical behavior in networks. Under natural assumptions, the flow in such networks must be acyclic. The goal of this article is to exploit this property for the solution of corresponding optimization problems. To this end, we introduce several combinatorial models for acyclic flows, based on binary variables for flow directions. We compare these models and introduce a particular model that tries to capture acyclicity together with the supply/demand behavior. We analyze properties of this model, including variable fixing rules. Our computational results show that the usage of the corresponding constraints speeds up solution times by about a factor of 3 on average and a speed‐up of a factor of almost 5 for the time to prove optimality.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Habeck, Oliver ; Pfetsch, Marc E.
Art des Eintrags: Bibliographie
Titel: Combinatorial acyclicity models for potential‐based flows
Sprache: Englisch
Publikationsjahr: 2021
Ort: New York
Verlag: Wiley
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Networks
Jahrgang/Volume einer Zeitschrift: 79
(Heft-)Nummer: 1
DOI: 10.1002/net.22038
Zugehörige Links:
Kurzbeschreibung (Abstract):

Potential‐based flows constitute a basic model to represent physical behavior in networks. Under natural assumptions, the flow in such networks must be acyclic. The goal of this article is to exploit this property for the solution of corresponding optimization problems. To this end, we introduce several combinatorial models for acyclic flows, based on binary variables for flow directions. We compare these models and introduce a particular model that tries to capture acyclicity together with the supply/demand behavior. We analyze properties of this model, including variable fixing rules. Our computational results show that the usage of the corresponding constraints speeds up solution times by about a factor of 3 on average and a speed‐up of a factor of almost 5 for the time to prove optimality.

Freie Schlagworte: acyclic flows, gas networks, mixed‐integer program, network optimization, potential‐based flows, valid inequalities
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 510 Mathematik
Fachbereich(e)/-gebiet(e): 04 Fachbereich Mathematik
04 Fachbereich Mathematik > Optimierung
Hinterlegungsdatum: 15 Feb 2024 14:03
Letzte Änderung: 15 Feb 2024 14:03
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen