TU Darmstadt / ULB / TUbiblio

Adaptive Multi-Tier Intelligent Data Manager for Exascale

Carretero, Jesus ; Garcia-Blas, Javier ; Aldinucci, Marco ; Besnard, Jean-Baptiste ; Acquaviva, Jean-Thomas ; Brinkmann, Andre ; Vef, Marc-Andre ; Jeannot, Emmanuel ; Miranda, Alberto ; Nou, Ramon ; Riedel, Morris ; Torquati, Massimo ; Wolf, Felix (2023)
Adaptive Multi-Tier Intelligent Data Manager for Exascale.
20th ACM International Conference on Computing Frontiers. Bologna, Italien (09.-11.05.2023)
doi: 10.1145/3587135.3592174
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

The main objective of the ADMIRE project1 is the creation of an active I/O stack that dynamically adjusts computation and storage requirements through intelligent global coordination, the elasticity of computation and I/O, and the scheduling of storage resources along all levels of the storage hierarchy, while offering quality-of-service (QoS), energy efficiency, and resilience for accessing extremely large data sets in very heterogeneous computing and storage environments. We have developed a framework prototype that is able to dynamically adjust computation and storage requirements through intelligent global coordination, separated control, and data paths, the malleability of computation and I/O, the scheduling of storage resources along all levels of the storage hierarchy, and scalable monitoring techniques. The leading idea in ADMIRE is to co-design applications with ad-hoc storage systems that can be deployed with the application and adapt their computing and I/O behaviour on runtime, using malleability techniques, to increase the performance of applications and the throughput of the applications.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2023
Autor(en): Carretero, Jesus ; Garcia-Blas, Javier ; Aldinucci, Marco ; Besnard, Jean-Baptiste ; Acquaviva, Jean-Thomas ; Brinkmann, Andre ; Vef, Marc-Andre ; Jeannot, Emmanuel ; Miranda, Alberto ; Nou, Ramon ; Riedel, Morris ; Torquati, Massimo ; Wolf, Felix
Art des Eintrags: Bibliographie
Titel: Adaptive Multi-Tier Intelligent Data Manager for Exascale
Sprache: Englisch
Publikationsjahr: 4 August 2023
Verlag: ACM
Buchtitel: CF '23: Proceedings of the 20th ACM International Conference on Computing Frontiers
Veranstaltungstitel: 20th ACM International Conference on Computing Frontiers
Veranstaltungsort: Bologna, Italien
Veranstaltungsdatum: 09.-11.05.2023
DOI: 10.1145/3587135.3592174
Kurzbeschreibung (Abstract):

The main objective of the ADMIRE project1 is the creation of an active I/O stack that dynamically adjusts computation and storage requirements through intelligent global coordination, the elasticity of computation and I/O, and the scheduling of storage resources along all levels of the storage hierarchy, while offering quality-of-service (QoS), energy efficiency, and resilience for accessing extremely large data sets in very heterogeneous computing and storage environments. We have developed a framework prototype that is able to dynamically adjust computation and storage requirements through intelligent global coordination, separated control, and data paths, the malleability of computation and I/O, the scheduling of storage resources along all levels of the storage hierarchy, and scalable monitoring techniques. The leading idea in ADMIRE is to co-design applications with ad-hoc storage systems that can be deployed with the application and adapt their computing and I/O behaviour on runtime, using malleability techniques, to increase the performance of applications and the throughput of the applications.

Freie Schlagworte: EU/BMBF|ADMIRE, EU, BMBF
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Parallele Programmierung
Hinterlegungsdatum: 04 Apr 2024 09:44
Letzte Änderung: 09 Jul 2024 06:47
PPN: 519666917
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen