TU Darmstadt / ULB / TUbiblio

Performance-driven scheduling for malleable workloads

Almaaitah, Njoud O. ; Singh, David E. ; Özden, Taylan ; Carretero, Jesus (2024)
Performance-driven scheduling for malleable workloads.
In: Journal of Supercomputing, 2024
doi: 10.1007/s11227-023-05882-0
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The development of adaptive scheduling algorithms that take advantage of malleability has become a crucial area of research in many large-scale projects. Malleable workloads can improve the system’s performance but, at the same time, provide an extra dimension to the scheduling problem. This paper proposes an adaptive, performance-based job scheduling method that emphasizes the backfilling concept with malleability. The proposed method performs the malleability operations only when the estimated execution time of the involved applications is better than or equal to the execution time on the allocated resources without reconfiguration. The reconfiguration feasibility is determined by performance models considering the application scalability and reconfiguration overheads. Different policies for implementing malleability are presented, each targeting a specific workload in terms of job size and scalability. The comprehensive evaluation shows an improvement in the slowdown up to 49% compared to the non-adaptive baseline scheduling algorithm.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Almaaitah, Njoud O. ; Singh, David E. ; Özden, Taylan ; Carretero, Jesus
Art des Eintrags: Bibliographie
Titel: Performance-driven scheduling for malleable workloads
Sprache: Englisch
Publikationsjahr: 29 Januar 2024
Verlag: Springer
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Supercomputing
Jahrgang/Volume einer Zeitschrift: 2024
DOI: 10.1007/s11227-023-05882-0
Kurzbeschreibung (Abstract):

The development of adaptive scheduling algorithms that take advantage of malleability has become a crucial area of research in many large-scale projects. Malleable workloads can improve the system’s performance but, at the same time, provide an extra dimension to the scheduling problem. This paper proposes an adaptive, performance-based job scheduling method that emphasizes the backfilling concept with malleability. The proposed method performs the malleability operations only when the estimated execution time of the involved applications is better than or equal to the execution time on the allocated resources without reconfiguration. The reconfiguration feasibility is determined by performance models considering the application scalability and reconfiguration overheads. Different policies for implementing malleability are presented, each targeting a specific workload in terms of job size and scalability. The comprehensive evaluation shows an improvement in the slowdown up to 49% compared to the non-adaptive baseline scheduling algorithm.

Freie Schlagworte: EU/BMBF|ADMIRE
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Parallele Programmierung
Hinterlegungsdatum: 07 Mär 2024 13:30
Letzte Änderung: 04 Jun 2024 12:27
PPN: 518818152
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen