Almaaitah, Njoud O. ; Singh, David E. ; Özden, Taylan ; Carretero, Jesus (2024)
Performance-driven scheduling for malleable workloads.
In: Journal of Supercomputing, 2024
doi: 10.1007/s11227-023-05882-0
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
The development of adaptive scheduling algorithms that take advantage of malleability has become a crucial area of research in many large-scale projects. Malleable workloads can improve the system’s performance but, at the same time, provide an extra dimension to the scheduling problem. This paper proposes an adaptive, performance-based job scheduling method that emphasizes the backfilling concept with malleability. The proposed method performs the malleability operations only when the estimated execution time of the involved applications is better than or equal to the execution time on the allocated resources without reconfiguration. The reconfiguration feasibility is determined by performance models considering the application scalability and reconfiguration overheads. Different policies for implementing malleability are presented, each targeting a specific workload in terms of job size and scalability. The comprehensive evaluation shows an improvement in the slowdown up to 49% compared to the non-adaptive baseline scheduling algorithm.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2024 |
Autor(en): | Almaaitah, Njoud O. ; Singh, David E. ; Özden, Taylan ; Carretero, Jesus |
Art des Eintrags: | Bibliographie |
Titel: | Performance-driven scheduling for malleable workloads |
Sprache: | Englisch |
Publikationsjahr: | 29 Januar 2024 |
Verlag: | Springer |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Journal of Supercomputing |
Jahrgang/Volume einer Zeitschrift: | 2024 |
DOI: | 10.1007/s11227-023-05882-0 |
Kurzbeschreibung (Abstract): | The development of adaptive scheduling algorithms that take advantage of malleability has become a crucial area of research in many large-scale projects. Malleable workloads can improve the system’s performance but, at the same time, provide an extra dimension to the scheduling problem. This paper proposes an adaptive, performance-based job scheduling method that emphasizes the backfilling concept with malleability. The proposed method performs the malleability operations only when the estimated execution time of the involved applications is better than or equal to the execution time on the allocated resources without reconfiguration. The reconfiguration feasibility is determined by performance models considering the application scalability and reconfiguration overheads. Different policies for implementing malleability are presented, each targeting a specific workload in terms of job size and scalability. The comprehensive evaluation shows an improvement in the slowdown up to 49% compared to the non-adaptive baseline scheduling algorithm. |
Freie Schlagworte: | EU/BMBF|ADMIRE |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Parallele Programmierung |
Hinterlegungsdatum: | 07 Mär 2024 13:30 |
Letzte Änderung: | 04 Jun 2024 12:27 |
PPN: | 518818152 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |