TU Darmstadt / ULB / TUbiblio

Fast data-dependence profiling through prior static analysis

Norouzi, Mohammad ; Morew, Nicolas ; Ilias, Qamar ; Rothenberger, Lukas ; Jannesari, Ali ; Wolf, Felix (2024)
Fast data-dependence profiling through prior static analysis.
In: Parallel Computing, 119
doi: 10.1016/j.parco.2024.103063
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Data-dependence profiling is a program-analysis technique for detecting parallelism opportunities in sequential programs. It captures data dependences that actually occur during program execution, filtering parallelism-preventing dependences that purely static methods assume only because they lack critical runtime information, such as the values of pointers and array indices. Profiling, however, suffers from high runtime overhead. In our earlier work, we accelerated data-dependence profiling by excluding polyhedral loops that can be handled statically using certain compilers and eliminating scalar variables that create statically-identifiable data dependences. In this paper, we combine the two methods and integrate them into DiscoPoP, a data-dependence profiler and parallelism discovery tool. Additionally, we detect reduction patterns statically and unify the three static analyses with the DiscoPoP framework to significantly diminish the profiling overhead and for a wider range of programs. We have evaluated our unified approaches with 49 benchmarks from three benchmark suites and two computer simulation applications. The evaluation results show that our approach reports fewer false positive and negative data dependences than the original data-dependence profiler and reduces the profiling time by at least 43%, with a median reduction of 76% across all programs. Also, we identify 40% of reduction cases statically and eliminate the associated profiling overhead for these cases.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Norouzi, Mohammad ; Morew, Nicolas ; Ilias, Qamar ; Rothenberger, Lukas ; Jannesari, Ali ; Wolf, Felix
Art des Eintrags: Bibliographie
Titel: Fast data-dependence profiling through prior static analysis
Sprache: Englisch
Publikationsjahr: 1 Februar 2024
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Parallel Computing
Jahrgang/Volume einer Zeitschrift: 119
DOI: 10.1016/j.parco.2024.103063
Kurzbeschreibung (Abstract):

Data-dependence profiling is a program-analysis technique for detecting parallelism opportunities in sequential programs. It captures data dependences that actually occur during program execution, filtering parallelism-preventing dependences that purely static methods assume only because they lack critical runtime information, such as the values of pointers and array indices. Profiling, however, suffers from high runtime overhead. In our earlier work, we accelerated data-dependence profiling by excluding polyhedral loops that can be handled statically using certain compilers and eliminating scalar variables that create statically-identifiable data dependences. In this paper, we combine the two methods and integrate them into DiscoPoP, a data-dependence profiler and parallelism discovery tool. Additionally, we detect reduction patterns statically and unify the three static analyses with the DiscoPoP framework to significantly diminish the profiling overhead and for a wider range of programs. We have evaluated our unified approaches with 49 benchmarks from three benchmark suites and two computer simulation applications. The evaluation results show that our approach reports fewer false positive and negative data dependences than the original data-dependence profiler and reduces the profiling time by at least 43%, with a median reduction of 76% across all programs. Also, we identify 40% of reduction cases statically and eliminate the associated profiling overhead for these cases.

Freie Schlagworte: BMBF/HMWK|NHR4CES, LOEWE|SF4.0
Zusätzliche Informationen:

Art.No.: 103063

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Parallele Programmierung
Zentrale Einrichtungen
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ)
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) > Hochleistungsrechner
Hinterlegungsdatum: 07 Mär 2024 13:27
Letzte Änderung: 04 Jun 2024 11:48
PPN: 518816753
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen