Ritter, Marcus ; Calotoiu, Alexandru ; Rinke, Sebastian ; Reimann, Thorsten ; Hoefler, Torsten ; Wolf, Felix (2020)
Learning Cost-Effective Sampling Strategies for Empirical Performance Modeling.
34th IEEE International Parallel and Distributed Processing Symposium (IPDPS'20). New Orleans, USA (18.-22.05.2020)
doi: 10.1109/IPDPS47924.2020.00095
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
Identifying scalability bottlenecks in parallel applications is a vital but also laborious and expensive task. Empirical performance models have proven to be helpful to find such limitations, though they require a set of experiments in order to gain valuable insights. Therefore, the experiment design determines the quality and cost of the models. Extra-P is an empirical modeling tool that uses small-scale experiments to assess the scalability of applications. Its current version requires an exponential number of experiments per model parameter. This makes the creation of empirical performance models very expensive, and in some situations even impractical. In this paper, we propose a novel parameter-value selection heuristic, which functions as a guideline for the experiment design, leveraging sparse performance-modeling, a technique that only needs a polynomial number of experiments per model parameter. Using synthetic analysis and data from three different case studies, we show that our solution reduces the average modeling costs by about 85% while retaining 92% of the model accuracy.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2020 |
Autor(en): | Ritter, Marcus ; Calotoiu, Alexandru ; Rinke, Sebastian ; Reimann, Thorsten ; Hoefler, Torsten ; Wolf, Felix |
Art des Eintrags: | Bibliographie |
Titel: | Learning Cost-Effective Sampling Strategies for Empirical Performance Modeling |
Sprache: | Englisch |
Publikationsjahr: | 14 Juli 2020 |
Verlag: | IEEE |
Buchtitel: | Proceedings: 2020 IEEE 34th International Parallel and Distributed Processing Symposium |
Veranstaltungstitel: | 34th IEEE International Parallel and Distributed Processing Symposium (IPDPS'20) |
Veranstaltungsort: | New Orleans, USA |
Veranstaltungsdatum: | 18.-22.05.2020 |
DOI: | 10.1109/IPDPS47924.2020.00095 |
Kurzbeschreibung (Abstract): | Identifying scalability bottlenecks in parallel applications is a vital but also laborious and expensive task. Empirical performance models have proven to be helpful to find such limitations, though they require a set of experiments in order to gain valuable insights. Therefore, the experiment design determines the quality and cost of the models. Extra-P is an empirical modeling tool that uses small-scale experiments to assess the scalability of applications. Its current version requires an exponential number of experiments per model parameter. This makes the creation of empirical performance models very expensive, and in some situations even impractical. In this paper, we propose a novel parameter-value selection heuristic, which functions as a guideline for the experiment design, leveraging sparse performance-modeling, a technique that only needs a polynomial number of experiments per model parameter. Using synthetic analysis and data from three different case studies, we show that our solution reduces the average modeling costs by about 85% while retaining 92% of the model accuracy. |
Freie Schlagworte: | LOEWE|SF4.0, DFG|323299120, DFG|320898076, BMBF|01IH16008D, DoE|DE-SC0015524, DFG, BMBF, LOEWE |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Parallele Programmierung Zentrale Einrichtungen Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) > Hochleistungsrechner |
Hinterlegungsdatum: | 04 Apr 2024 09:04 |
Letzte Änderung: | 27 Jun 2024 12:56 |
PPN: | 519418484 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |