TU Darmstadt / ULB / TUbiblio

Size‐Controlled Synthesis of IrO₂ Nanoparticles at High Temperatures for the Oxygen Evolution Reaction

Malinovic, Marko ; Paciok, Paul ; Koh, Ezra Shanli ; Geuß, Moritz ; Choi, Jisik ; Pfeifer, Philipp ; Hofmann, Jan Philipp ; Göhl, Daniel ; Heggen, Marc ; Cherevko, Serhiy ; Ledendecker, Marc (2024)
Size‐Controlled Synthesis of IrO₂ Nanoparticles at High Temperatures for the Oxygen Evolution Reaction.
In: Advanced Energy Materials, 2023, 13 (28)
doi: 10.26083/tuprints-00024703
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Iridium oxide is the state‐of‐the‐art catalyst for electrochemical water oxidation in an acidic medium. Despite being one of the rarest elements in the Earth's crust, there is a pressing need to maximize the utilization and longevity of active iridium centers. While conventional low‐temperature synthesis can yield nanostructures with high mass‐specific activity, they are often insufficiently stable during water oxidation. Structurally ordered iridium oxide is one of the most stable electrocatalysts utilized in polymer electrolyte membrane water electrolysis that benefits from the chemically ordered structure. However, its preparation requires thermal treatment at high temperatures, which improves its durability but can also result in reduced surface area and altered particle morphology. In this study, the challenge of controlling nanoparticle size during the preparation of structurally ordered iridium oxide is successfully addressed, which typically requires high‐temperature thermal treatment. By utilizing a silica nanoreactor as a hard template, a precise control is achieved over the nanoparticle size during high‐temperature thermal treatment. This approach maintains high durability while avoiding the common problem of reduced surface area and altered particle morphology. Specifically, this study is able to synthesize iridium oxide nanoparticles at temperatures up to 800 °C, while keeping their dimensions below 10 nm.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Malinovic, Marko ; Paciok, Paul ; Koh, Ezra Shanli ; Geuß, Moritz ; Choi, Jisik ; Pfeifer, Philipp ; Hofmann, Jan Philipp ; Göhl, Daniel ; Heggen, Marc ; Cherevko, Serhiy ; Ledendecker, Marc
Art des Eintrags: Zweitveröffentlichung
Titel: Size‐Controlled Synthesis of IrO₂ Nanoparticles at High Temperatures for the Oxygen Evolution Reaction
Sprache: Englisch
Publikationsjahr: 13 Februar 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2023
Ort der Erstveröffentlichung: Weinheim
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Energy Materials
Jahrgang/Volume einer Zeitschrift: 13
(Heft-)Nummer: 28
Kollation: 9 Seiten
DOI: 10.26083/tuprints-00024703
URL / URN: https://tuprints.ulb.tu-darmstadt.de/24703
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Iridium oxide is the state‐of‐the‐art catalyst for electrochemical water oxidation in an acidic medium. Despite being one of the rarest elements in the Earth's crust, there is a pressing need to maximize the utilization and longevity of active iridium centers. While conventional low‐temperature synthesis can yield nanostructures with high mass‐specific activity, they are often insufficiently stable during water oxidation. Structurally ordered iridium oxide is one of the most stable electrocatalysts utilized in polymer electrolyte membrane water electrolysis that benefits from the chemically ordered structure. However, its preparation requires thermal treatment at high temperatures, which improves its durability but can also result in reduced surface area and altered particle morphology. In this study, the challenge of controlling nanoparticle size during the preparation of structurally ordered iridium oxide is successfully addressed, which typically requires high‐temperature thermal treatment. By utilizing a silica nanoreactor as a hard template, a precise control is achieved over the nanoparticle size during high‐temperature thermal treatment. This approach maintains high durability while avoiding the common problem of reduced surface area and altered particle morphology. Specifically, this study is able to synthesize iridium oxide nanoparticles at temperatures up to 800 °C, while keeping their dimensions below 10 nm.

Freie Schlagworte: iridium oxide nanoparticles, oxygen evolution reaction, polymer electrolyte membrane water electrolysis
ID-Nummer: 2301450
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-247035
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 540 Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Oberflächenforschung
07 Fachbereich Chemie
07 Fachbereich Chemie > Ernst-Berl-Institut
Hinterlegungsdatum: 13 Feb 2024 13:51
Letzte Änderung: 14 Feb 2024 06:26
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen