TU Darmstadt / ULB / TUbiblio

Olefin ring‐closing metathesis under spatial confinement: morphology−transport relationships

Tallarek, Ulrich ; Hochstrasser, Janika ; Ziegler, Felix ; Huang, Xiaohui ; Kübel, Christian ; Buchmeiser, Michael R. (2021)
Olefin ring‐closing metathesis under spatial confinement: morphology−transport relationships.
In: ChemCatChem, 13 (1)
doi: 10.1002/cctc.202001495
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Spatial confinement effects on hindered transport in mesoporous silica particles are quantified using reconstructions of their morphology obtained by electron tomography as geometrical models in direct diffusion simulations for passive, finite‐size tracers. We monitor accessible porosity and effective diffusion coefficients resulting from steric and hydrodynamic interactions between tracers and pore space confinement as a function of λ=dtracer/dmeso, the ratio of tracer to mean mesopore size. For λ=0, pointlike tracers reproduce the true diffusive tortuosities. For λ>0, derived hindrance factors quantify the extent to which diffusion through the materials is hindered compared with free diffusion in the bulk liquid. Morphology‐transport relationships are then discussed with respect to the immobilization, formation, and transport of key molecular species in the ring‐closing metathesis of an α,ω‐diene to macro(mono)cyclization product and oligomer, with a 2nd‐generation Hoveyda‐Grubbs type catalyst immobilized inside the mesopores of the particles.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Tallarek, Ulrich ; Hochstrasser, Janika ; Ziegler, Felix ; Huang, Xiaohui ; Kübel, Christian ; Buchmeiser, Michael R.
Art des Eintrags: Bibliographie
Titel: Olefin ring‐closing metathesis under spatial confinement: morphology−transport relationships
Sprache: Englisch
Publikationsjahr: 2021
Ort: Weinheim
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: ChemCatChem
Jahrgang/Volume einer Zeitschrift: 13
(Heft-)Nummer: 1
DOI: 10.1002/cctc.202001495
Zugehörige Links:
Kurzbeschreibung (Abstract):

Spatial confinement effects on hindered transport in mesoporous silica particles are quantified using reconstructions of their morphology obtained by electron tomography as geometrical models in direct diffusion simulations for passive, finite‐size tracers. We monitor accessible porosity and effective diffusion coefficients resulting from steric and hydrodynamic interactions between tracers and pore space confinement as a function of λ=dtracer/dmeso, the ratio of tracer to mean mesopore size. For λ=0, pointlike tracers reproduce the true diffusive tortuosities. For λ>0, derived hindrance factors quantify the extent to which diffusion through the materials is hindered compared with free diffusion in the bulk liquid. Morphology‐transport relationships are then discussed with respect to the immobilization, formation, and transport of key molecular species in the ring‐closing metathesis of an α,ω‐diene to macro(mono)cyclization product and oligomer, with a 2nd‐generation Hoveyda‐Grubbs type catalyst immobilized inside the mesopores of the particles.

Alternatives oder übersetztes Abstract:
Alternatives AbstractSprache

Unravelling spatial confinement effects: Expressions for accessible porosity and hindered diffusion in mesoporous silicas derived from pore-scale simulations in 3D reconstructions reveal consequences for catalyst immobilization as well as the formation and transport of products in olefin ring-closing metathesis utilizing spatial confinement effects.

Englisch
Freie Schlagworte: electron tomography, heterogeneous catalysis, hindered diffusion, mesoporous materials, metathesis
Zusätzliche Informationen:

This article also appears in: Catalysis in Confined Spaces

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > In-Situ Elektronenmikroskopie
Hinterlegungsdatum: 13 Feb 2024 07:48
Letzte Änderung: 13 Feb 2024 07:48
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen