TU Darmstadt / ULB / TUbiblio

Designing structurally ordered Pt/Sn nanoparticles in ionic liquids and their enhanced catalytic performance

Dietrich, Christine ; Hähsler, Martin ; Wang, Wu ; Kübel, Christian ; Behrens, Silke (2020)
Designing structurally ordered Pt/Sn nanoparticles in ionic liquids and their enhanced catalytic performance.
In: ChemNanoMat, 6 (12)
doi: 10.1002/cnma.202000433
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Multimetallic nanoparticles (NPs) often exhibit enhanced catalytic properties that differ from their parent materials. Carefully exploring the structures of multimetallic NPs is a prerequisite for understanding the structure‐ and composition‐associated properties. Herein, intermetallic Pt/Sn NPs with tunable compositions are designed exploiting the beneficial properties of ionic liquids (ILs) in a one‐pot synthetic procedure. Metal salt precursors are reduced with triethylhydridoborate, whereby the cation of the triethylhydridoborate is adapted to the cation of the IL. Both the initial metal precursor ratio and the type of IL influence the structure of the NPs, with the effect of the IL being more pronounced. PtSn nanocrystals are obtained as phase pure products under optimized reaction conditions, whereby a microwave‐assisted approach leads to higher crystallinity. In the hydrogenation of α,β‐unsaturated aldehydes, the catalytic performance obviously depend on the NP composition. In bimetallic Pt/Sn NPs, higher Pt content leads to increased conversion, while increase in Sn increases selectivity to the cinnamic alcohol.

Typ des Eintrags: Artikel
Erschienen: 2020
Autor(en): Dietrich, Christine ; Hähsler, Martin ; Wang, Wu ; Kübel, Christian ; Behrens, Silke
Art des Eintrags: Bibliographie
Titel: Designing structurally ordered Pt/Sn nanoparticles in ionic liquids and their enhanced catalytic performance
Sprache: Englisch
Publikationsjahr: 2020
Ort: Weinheim
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: ChemNanoMat
Jahrgang/Volume einer Zeitschrift: 6
(Heft-)Nummer: 12
DOI: 10.1002/cnma.202000433
Zugehörige Links:
Kurzbeschreibung (Abstract):

Multimetallic nanoparticles (NPs) often exhibit enhanced catalytic properties that differ from their parent materials. Carefully exploring the structures of multimetallic NPs is a prerequisite for understanding the structure‐ and composition‐associated properties. Herein, intermetallic Pt/Sn NPs with tunable compositions are designed exploiting the beneficial properties of ionic liquids (ILs) in a one‐pot synthetic procedure. Metal salt precursors are reduced with triethylhydridoborate, whereby the cation of the triethylhydridoborate is adapted to the cation of the IL. Both the initial metal precursor ratio and the type of IL influence the structure of the NPs, with the effect of the IL being more pronounced. PtSn nanocrystals are obtained as phase pure products under optimized reaction conditions, whereby a microwave‐assisted approach leads to higher crystallinity. In the hydrogenation of α,β‐unsaturated aldehydes, the catalytic performance obviously depend on the NP composition. In bimetallic Pt/Sn NPs, higher Pt content leads to increased conversion, while increase in Sn increases selectivity to the cinnamic alcohol.

Freie Schlagworte: Intermetallic nanoparticles, Pt/Sn, ionic liquids, selective hydrogenation, α,β-unsaturated aldehydes
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > In-Situ Elektronenmikroskopie
Hinterlegungsdatum: 13 Feb 2024 07:45
Letzte Änderung: 13 Feb 2024 07:45
PPN:
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen