TU Darmstadt / ULB / TUbiblio

Poster: Processing of Latency- and Deadline-Aware Big Data Approaches at the Edge

Gropengießer, Uwe ; Brandherm, Florian ; Mühlhäuser, Max (2023)
Poster: Processing of Latency- and Deadline-Aware Big Data Approaches at the Edge.
8th ACM/IEEE Symposium on Edge Computing. Wilmington, USA (06.12. - 09.12.2023)
doi: 10.1145/3583740.3626623
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Time-critical requests are becoming increasingly important for microservice service chains. For such service chains, a late response may be worthless or cause failures. Previous works proposed to prevent late responses by trading computation time for result quality, depending on the available resources. However, determining the Quality of Result (QoR) for each operation in a service chain ahead of time, as is the state of the art, cannot prevent requests that are currently processing from being late if resource availability changes, e.g., due to resource sharing at inelastic Edge sites. Therefore, we present a framework to control the QoR online by replanning QoR values whenever resource changes are detected.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2023
Autor(en): Gropengießer, Uwe ; Brandherm, Florian ; Mühlhäuser, Max
Art des Eintrags: Bibliographie
Titel: Poster: Processing of Latency- and Deadline-Aware Big Data Approaches at the Edge
Sprache: Englisch
Publikationsjahr: 7 Dezember 2023
Verlag: IEEE
Buchtitel: 2023 IEEE/ACM Symposium on Edge Computing (SEC)
Veranstaltungstitel: 8th ACM/IEEE Symposium on Edge Computing
Veranstaltungsort: Wilmington, USA
Veranstaltungsdatum: 06.12. - 09.12.2023
DOI: 10.1145/3583740.3626623
URL / URN: https://ieeexplore.ieee.org/document/10419309
Kurzbeschreibung (Abstract):

Time-critical requests are becoming increasingly important for microservice service chains. For such service chains, a late response may be worthless or cause failures. Previous works proposed to prevent late responses by trading computation time for result quality, depending on the available resources. However, determining the Quality of Result (QoR) for each operation in a service chain ahead of time, as is the state of the art, cannot prevent requests that are currently processing from being late if resource availability changes, e.g., due to resource sharing at inelastic Edge sites. Therefore, we present a framework to control the QoR online by replanning QoR values whenever resource changes are detected.

Freie Schlagworte: Edge Computing, Approximate Computing, Quality of Result
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Telekooperation
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > B: Adaptionsmechanismen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > B: Adaptionsmechanismen > Teilprojekt B2: Koordination und Ausführung
TU-Projekte: Bund/BMBF|01IS17050|Software Campus 2.0
DFG|SFB1053|SFB1053 TPB02 Mühlhä
Hinterlegungsdatum: 03 Apr 2024 13:38
Letzte Änderung: 03 Apr 2024 13:38
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen