TU Darmstadt / ULB / TUbiblio

Isotope-periodic multilayer method for short self-diffusion paths – a comparative neutron and synchrotron Mössbauer reflectometric study of FePd alloys

Merkel, D. G. ; Sajti, S. ; Fetzer, C. ; Major, J. ; Major, M. ; Rüffer, R. ; Rühm, A. ; Stankov, S. ; Tanczikó, F. ; Bottyán, L. (2010)
Isotope-periodic multilayer method for short self-diffusion paths – a comparative neutron and synchrotron Mössbauer reflectometric study of FePd alloys.
In: Journal of Physics: Conference Series, 211 (1)
doi: 10.1088/1742-6596/211/1/012029
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

FePt, FePd, CoPt, and CoPd in equilibrium exhibit the L1₀ structure with high perpendicular magnetic anisotropy making them attractive candidates for high-density magnetic recording. Magnetic properties of these films depend on the distribution and orientation of the L1₀ fraction controlled by diffusion on atomic scale. Epitaxial isotope-periodic natFePd/⁵⁷FePd alloy films were prepared by molecular beam epitaxy and heat treated at 500°C for various retention times. Isotope-sensitive non-destructive methods, neutron reflectometry and synchrotron Mössbauer reflectometry were applied to follow very short diffusion paths normal to the film plane. Squared diffusion lengths and diffusion profiles were obtained from the fitting of experimental reflectivity curves for each annealing treatment steps. The somewhat different diffusion lengths obtained for the neutron and synchrotronMössbauer reflectograms of the same samples are explained by the larger footprint of the sample in the neutron experiment for which interface inhomogeneities are to be averaged. Diffusion in the microscopically different local environments were modelled by piecewise constant diffusion coefficients in the regions identified as different species by conversion electron Mössbauer spectroscopy.

Typ des Eintrags: Artikel
Erschienen: 2010
Autor(en): Merkel, D. G. ; Sajti, S. ; Fetzer, C. ; Major, J. ; Major, M. ; Rüffer, R. ; Rühm, A. ; Stankov, S. ; Tanczikó, F. ; Bottyán, L.
Art des Eintrags: Bibliographie
Titel: Isotope-periodic multilayer method for short self-diffusion paths – a comparative neutron and synchrotron Mössbauer reflectometric study of FePd alloys
Sprache: Englisch
Publikationsjahr: 1 Februar 2010
Ort: Bristol
Verlag: IOP Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Physics: Conference Series
Jahrgang/Volume einer Zeitschrift: 211
(Heft-)Nummer: 1
Kollation: 6 Seiten
DOI: 10.1088/1742-6596/211/1/012029
Zugehörige Links:
Kurzbeschreibung (Abstract):

FePt, FePd, CoPt, and CoPd in equilibrium exhibit the L1₀ structure with high perpendicular magnetic anisotropy making them attractive candidates for high-density magnetic recording. Magnetic properties of these films depend on the distribution and orientation of the L1₀ fraction controlled by diffusion on atomic scale. Epitaxial isotope-periodic natFePd/⁵⁷FePd alloy films were prepared by molecular beam epitaxy and heat treated at 500°C for various retention times. Isotope-sensitive non-destructive methods, neutron reflectometry and synchrotron Mössbauer reflectometry were applied to follow very short diffusion paths normal to the film plane. Squared diffusion lengths and diffusion profiles were obtained from the fitting of experimental reflectivity curves for each annealing treatment steps. The somewhat different diffusion lengths obtained for the neutron and synchrotronMössbauer reflectograms of the same samples are explained by the larger footprint of the sample in the neutron experiment for which interface inhomogeneities are to be averaged. Diffusion in the microscopically different local environments were modelled by piecewise constant diffusion coefficients in the regions identified as different species by conversion electron Mössbauer spectroscopy.

ID-Nummer: Artikel-ID: 012029
Zusätzliche Informationen:

Polarized Neutrons and Synchrotron X-rays for Magnetism Conference 2009 2–5 August 2009, Bonn, Germany

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 500 Naturwissenschaften
600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Dünne Schichten
Hinterlegungsdatum: 13 Feb 2024 07:28
Letzte Änderung: 13 Feb 2024 07:28
PPN:
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen