TU Darmstadt / ULB / TUbiblio

Engineering the Site‐Disorder and Lithium Distribution in the Lithium Superionic Argyrodite Li₆PS₅Br

Gautam, Ajay ; Sadowski, Marcel ; Ghidiu, Michael ; Minafra, Nicolò ; Senyshyn, Anatoliy ; Albe, Karsten ; Zeier, Wolfgang G. (2024)
Engineering the Site‐Disorder and Lithium Distribution in the Lithium Superionic Argyrodite Li₆PS₅Br.
In: Advanced Energy Materials, 2021, 11 (5)
doi: 10.26083/tuprints-00017802
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Lithium argyrodite superionic conductors, of the form Li₆PS₅X (X = Cl, Br, and I), have shown great promise as electrolytes for all‐solid‐state batteries because of their high ionic conductivity and processability. The ionic conductivity of these materials is highly influenced by the structural disorder of S²⁻/X⁻ anions; however, it is unclear if and how this affects the Li distribution and how it relates to transport, which is critical for improving conductivities. Here it is shown that the site‐disorder once thought to be inherent to given compositions can be carefully controlled in Li₆PS₅Br by tuning synthesis conditions. The site‐disorder increases with temperature and can be "frozen" in. Neutron diffraction shows this phenomenon to affect the Li⁺ substructure by decreasing the jump distance between so‐called "cages" of clustered Li⁺ ions; expansion of these cages makes a more interconnected pathway for Li⁺ diffusion, thereby increasing ionic conductivity. Additionally, ab initio molecular dynamics simulations provide Li⁺ diffusion coefficients and time‐averaged radial distribution functions as a function of the site‐disorder, corroborating the experimental results on Li⁺ distribution and transport. These approaches of modulating the Li+ substructure can be considered essential for the design and optimization of argyrodites and may be extended to other lithium superionic conductors.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Gautam, Ajay ; Sadowski, Marcel ; Ghidiu, Michael ; Minafra, Nicolò ; Senyshyn, Anatoliy ; Albe, Karsten ; Zeier, Wolfgang G.
Art des Eintrags: Zweitveröffentlichung
Titel: Engineering the Site‐Disorder and Lithium Distribution in the Lithium Superionic Argyrodite Li₆PS₅Br
Sprache: Englisch
Publikationsjahr: 12 Februar 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2021
Ort der Erstveröffentlichung: Weinheim
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Energy Materials
Jahrgang/Volume einer Zeitschrift: 11
(Heft-)Nummer: 5
Kollation: 10 Seiten
DOI: 10.26083/tuprints-00017802
URL / URN: https://tuprints.ulb.tu-darmstadt.de/17802
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Lithium argyrodite superionic conductors, of the form Li₆PS₅X (X = Cl, Br, and I), have shown great promise as electrolytes for all‐solid‐state batteries because of their high ionic conductivity and processability. The ionic conductivity of these materials is highly influenced by the structural disorder of S²⁻/X⁻ anions; however, it is unclear if and how this affects the Li distribution and how it relates to transport, which is critical for improving conductivities. Here it is shown that the site‐disorder once thought to be inherent to given compositions can be carefully controlled in Li₆PS₅Br by tuning synthesis conditions. The site‐disorder increases with temperature and can be "frozen" in. Neutron diffraction shows this phenomenon to affect the Li⁺ substructure by decreasing the jump distance between so‐called "cages" of clustered Li⁺ ions; expansion of these cages makes a more interconnected pathway for Li⁺ diffusion, thereby increasing ionic conductivity. Additionally, ab initio molecular dynamics simulations provide Li⁺ diffusion coefficients and time‐averaged radial distribution functions as a function of the site‐disorder, corroborating the experimental results on Li⁺ distribution and transport. These approaches of modulating the Li+ substructure can be considered essential for the design and optimization of argyrodites and may be extended to other lithium superionic conductors.

Freie Schlagworte: anionic site‐disorder, diffusion, lithium substructure, solid electrolytes, solid‐state batteries
ID-Nummer: Artikel-ID: 2003369
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-178027
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 540 Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung
LOEWE
LOEWE > LOEWE-Schwerpunkte
LOEWE > LOEWE-Schwerpunkte > FLAME - Fermi Level Engineering Antiferroelektrischer Materialien für Energiespeicher und Isolatoren
Hinterlegungsdatum: 12 Feb 2024 13:44
Letzte Änderung: 13 Feb 2024 07:53
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen