TU Darmstadt / ULB / TUbiblio

Filtering and Ranking of Code Regions for Parallelization via Hotspot Detection and OpenMP Overhead Analysis

Mohammadi, Seyed Ali ; Rothenberger, Lukas ; Morais, Gustavo de ; Görlich, Bertin Nico ; Lille, Erik ; Rüthers, Hendrik ; Wolf, Felix (2023)
Filtering and Ranking of Code Regions for Parallelization via Hotspot Detection and OpenMP Overhead Analysis.
2023 International Conference on High Performance Computing, Network, Storage, and Analysis. Denver, USA (12.-17.11.2023)
doi: 10.1145/3624062.3624206
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Many high-performance computing applications reach millions of code lines and hundreds of code regions. Analyzing all code regions for parallelization with OpenMP is neither efficient nor necessary. To facilitate this task and minimize the effort by the user, the code regions of the application need to be filtered and ranked. We provide a simple filtering method to detect the critical code regions by clearly defining a hotspot. Afterward, we identify parallelizable loops by analyzing their data dependencies using an automatic tool. As the number of parallel opportunities can be high and the users must verify these parallel suggestions, we suggest a ranking strategy based on parallelization overhead to help them prioritize their endeavors and present a set of OpenMP microbenchmarks for overhead analysis. We calculate optimistic expected benefits using overhead estimations as ranking metrics and show how our ranking provides an improvement on the ranking based on serial runtime.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2023
Autor(en): Mohammadi, Seyed Ali ; Rothenberger, Lukas ; Morais, Gustavo de ; Görlich, Bertin Nico ; Lille, Erik ; Rüthers, Hendrik ; Wolf, Felix
Art des Eintrags: Bibliographie
Titel: Filtering and Ranking of Code Regions for Parallelization via Hotspot Detection and OpenMP Overhead Analysis
Sprache: Englisch
Publikationsjahr: 12 November 2023
Verlag: ACM
Buchtitel: Proceedings of 2023 SC 23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis (SC23Workshops)
Reihe: SC-W '23
Veranstaltungstitel: 2023 International Conference on High Performance Computing, Network, Storage, and Analysis
Veranstaltungsort: Denver, USA
Veranstaltungsdatum: 12.-17.11.2023
DOI: 10.1145/3624062.3624206
Kurzbeschreibung (Abstract):

Many high-performance computing applications reach millions of code lines and hundreds of code regions. Analyzing all code regions for parallelization with OpenMP is neither efficient nor necessary. To facilitate this task and minimize the effort by the user, the code regions of the application need to be filtered and ranked. We provide a simple filtering method to detect the critical code regions by clearly defining a hotspot. Afterward, we identify parallelizable loops by analyzing their data dependencies using an automatic tool. As the number of parallel opportunities can be high and the users must verify these parallel suggestions, we suggest a ranking strategy based on parallelization overhead to help them prioritize their endeavors and present a set of OpenMP microbenchmarks for overhead analysis. We calculate optimistic expected benefits using overhead estimations as ranking metrics and show how our ranking provides an improvement on the ranking based on serial runtime.

Freie Schlagworte: BMBF/HMWK|NHR4CES
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Parallele Programmierung
Hinterlegungsdatum: 13 Feb 2024 15:40
Letzte Änderung: 04 Apr 2024 09:00
PPN: 516064754
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen