TU Darmstadt / ULB / TUbiblio

Multi-objective Hybrid Autoscaling of Microservices in Kubernetes Clusters

Horn, Angelina ; Fard, Hamid Mohammadi ; Wolf, Felix
Hrsg.: Cano, José ; Trinder, Phil (2022)
Multi-objective Hybrid Autoscaling of Microservices in Kubernetes Clusters.
28th International Conference on Parallel and Distributed Computing (Euro-Par 2022). Glasgow, United Kingdom (22.-26.08.2022)
doi: 10.1007/978-3-031-12597-3_15
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

The cloud community has accepted microservices as the dominant architecture for implementing cloud native applications. To efficiently execute microservice-based applications, application owners need to carefully scale the required resources, considering the dynamic workload of individual microservices. The complexity of resource provisioning for such applications highlights the crucial role of autoscaling mechanisms. Kubernetes, the common orchestration framework for microservice-based applications, mainly proposes a horizontal pod autoscaling (HPA) mechanism, which, however, lacks efficiency. To hinder resource wastage and still achieve the requested average response time of microservices, we propose a multi-objective autoscaling mechanism. Based on machine learning techniques, we introduce a toolchain for hybrid autoscaling of microservices in Kubernetes. Comparing several machine learning techniques and also our in-house performance modeling tool, called Extra-P, we propose the most adequate model for solving the problem. Our extensive evaluation on a real-world benchmark application shows a significant reduction of resource consumption while still meeting the average response time specified by the user, which outperforms the results of common HPA in Kubernetes.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Herausgeber: Cano, José ; Trinder, Phil
Autor(en): Horn, Angelina ; Fard, Hamid Mohammadi ; Wolf, Felix
Art des Eintrags: Bibliographie
Titel: Multi-objective Hybrid Autoscaling of Microservices in Kubernetes Clusters
Sprache: Englisch
Publikationsjahr: 1 August 2022
Verlag: Springer
Buchtitel: Euro-Par 2022: Parallel Processing
Reihe: Lecture Notes in Computer Science
Band einer Reihe: 13440
Veranstaltungstitel: 28th International Conference on Parallel and Distributed Computing (Euro-Par 2022)
Veranstaltungsort: Glasgow, United Kingdom
Veranstaltungsdatum: 22.-26.08.2022
DOI: 10.1007/978-3-031-12597-3_15
Kurzbeschreibung (Abstract):

The cloud community has accepted microservices as the dominant architecture for implementing cloud native applications. To efficiently execute microservice-based applications, application owners need to carefully scale the required resources, considering the dynamic workload of individual microservices. The complexity of resource provisioning for such applications highlights the crucial role of autoscaling mechanisms. Kubernetes, the common orchestration framework for microservice-based applications, mainly proposes a horizontal pod autoscaling (HPA) mechanism, which, however, lacks efficiency. To hinder resource wastage and still achieve the requested average response time of microservices, we propose a multi-objective autoscaling mechanism. Based on machine learning techniques, we introduce a toolchain for hybrid autoscaling of microservices in Kubernetes. Comparing several machine learning techniques and also our in-house performance modeling tool, called Extra-P, we propose the most adequate model for solving the problem. Our extensive evaluation on a real-world benchmark application shows a significant reduction of resource consumption while still meeting the average response time specified by the user, which outperforms the results of common HPA in Kubernetes.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Parallele Programmierung
Hinterlegungsdatum: 13 Feb 2024 15:29
Letzte Änderung: 23 Apr 2024 14:44
PPN: 517421003
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen