TU Darmstadt / ULB / TUbiblio

Coordinative stabilization of single bismuth sites in a carbon–nitrogen matrix to generate atom‐efficient catalysts for electrochemical nitrate reduction to ammonia

Zhang, Wuyong ; Zhan, Shaoqi ; Xiao, Jie ; Petit, Tristan ; Schlesiger, Christopher ; Mellin, Maximilian ; Hofmann, Jan P. ; Heil, Tobias ; Müller, Riccarda ; Leopold, Kerstin ; Oschatz, Martin (2023)
Coordinative stabilization of single bismuth sites in a carbon–nitrogen matrix to generate atom‐efficient catalysts for electrochemical nitrate reduction to ammonia.
In: Advanced Science, 10 (28)
doi: 10.1002/advs.202302623
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Electrochemical nitrate reduction to ammonia powered by renewable electricity is not only a promising alternative to the established energy‐intense and non‐ecofriendly Haber–Bosch reaction for ammonia generation but also a future contributor to the ever‐more important denitrification schemes. Nevertheless, this reaction is still impeded by the lack of understanding for the underlying reaction mechanism on the molecular scale which is necessary for the rational design of active, selective, and stable electrocatalysts. Herein, a novel single‐site bismuth catalyst (Bi‐N‐C) for nitrate electroreduction is reported to produce ammonia with maximum Faradaic efficiency of 88.7% and at a high rate of 1.38 mg h⁻¹ mgcat⁻¹ at −0.35 V versus reversible hydrogen electrode (RHE). The active center (described as BiN₂C₂) is uncovered by detailed structural analysis. Coupled density functional theory calculations are applied to analyze the reaction mechanism and potential rate‐limiting steps for nitrate reduction based on the BiN₂C₂ model. The findings highlight the importance of model catalysts to utilize the potential of nitrate reduction as a new‐generation nitrogen‐management technology based on the construction of efficient active sites.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Zhang, Wuyong ; Zhan, Shaoqi ; Xiao, Jie ; Petit, Tristan ; Schlesiger, Christopher ; Mellin, Maximilian ; Hofmann, Jan P. ; Heil, Tobias ; Müller, Riccarda ; Leopold, Kerstin ; Oschatz, Martin
Art des Eintrags: Bibliographie
Titel: Coordinative stabilization of single bismuth sites in a carbon–nitrogen matrix to generate atom‐efficient catalysts for electrochemical nitrate reduction to ammonia
Sprache: Englisch
Publikationsjahr: 2023
Ort: Weinheim
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Science
Jahrgang/Volume einer Zeitschrift: 10
(Heft-)Nummer: 28
Kollation: 9 Seiten
DOI: 10.1002/advs.202302623
Zugehörige Links:
Kurzbeschreibung (Abstract):

Electrochemical nitrate reduction to ammonia powered by renewable electricity is not only a promising alternative to the established energy‐intense and non‐ecofriendly Haber–Bosch reaction for ammonia generation but also a future contributor to the ever‐more important denitrification schemes. Nevertheless, this reaction is still impeded by the lack of understanding for the underlying reaction mechanism on the molecular scale which is necessary for the rational design of active, selective, and stable electrocatalysts. Herein, a novel single‐site bismuth catalyst (Bi‐N‐C) for nitrate electroreduction is reported to produce ammonia with maximum Faradaic efficiency of 88.7% and at a high rate of 1.38 mg h⁻¹ mgcat⁻¹ at −0.35 V versus reversible hydrogen electrode (RHE). The active center (described as BiN₂C₂) is uncovered by detailed structural analysis. Coupled density functional theory calculations are applied to analyze the reaction mechanism and potential rate‐limiting steps for nitrate reduction based on the BiN₂C₂ model. The findings highlight the importance of model catalysts to utilize the potential of nitrate reduction as a new‐generation nitrogen‐management technology based on the construction of efficient active sites.

Freie Schlagworte: ammonia production, electrocatalysis, nitrate reduction reaction, single‐site catalysts
ID-Nummer: Artikel-ID: 2302623
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Oberflächenforschung
Hinterlegungsdatum: 12 Feb 2024 07:50
Letzte Änderung: 12 Feb 2024 10:24
PPN: 515505447
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen