TU Darmstadt / ULB / TUbiblio

On the numerical properties of high‐order spectral (Euler‐Bernoulli) beam elements

Eisenträger, Sascha ; Kapuria, Santosh ; Jain, Mayank ; Zhang, Junqi (2024)
On the numerical properties of high‐order spectral (Euler‐Bernoulli) beam elements.
In: ZAMM ‐ Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 2023, 103 (9)
doi: 10.26083/tuprints-00024665
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

In this paper, the numerical properties of a recently developed high‐order Spectral Euler‐Bernoulli Beam Element (SBE) featuring a C¹‐continuous approximation of the displacement field are assessed. The C¹‐continuous shape functions are based on two main ingredients, which are an Hermitian interpolation scheme and the use of Gauß‐Lobatto‐Legendre (GLL) points. Employing GLL‐points does not only avoid Runge oscillations, but also yields a diagonal mass matrix when exploiting the nodal quadrature technique as a mass lumping scheme. Especially in high‐frequency transient analyses, where often explicit time integration schemes are utilized, having a diagonal mass matrix is an attractive property of the proposed element formulation. This is, however, achieved at the cost of an under‐integration of the mass matrix. Therefore, a special focus of this paper is placed on the evaluation of the numerical properties, such as the conditioning of the element matrices and the attainable rates of convergence (ROCs). To this end, the numerical behavior of the SBEs is comprehensively analyzed by means of selected benchmark examples. In a nutshell, the obtained results demonstrate that the element yields good accuracy in combination with an increased efficiency for structural dynamics exploiting the diagonal structure of the mass matrix.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Eisenträger, Sascha ; Kapuria, Santosh ; Jain, Mayank ; Zhang, Junqi
Art des Eintrags: Zweitveröffentlichung
Titel: On the numerical properties of high‐order spectral (Euler‐Bernoulli) beam elements
Sprache: Englisch
Publikationsjahr: 9 Februar 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2023
Ort der Erstveröffentlichung: Weinheim
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: ZAMM ‐ Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik
Jahrgang/Volume einer Zeitschrift: 103
(Heft-)Nummer: 9
Kollation: 45 Seiten
DOI: 10.26083/tuprints-00024665
URL / URN: https://tuprints.ulb.tu-darmstadt.de/24665
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

In this paper, the numerical properties of a recently developed high‐order Spectral Euler‐Bernoulli Beam Element (SBE) featuring a C¹‐continuous approximation of the displacement field are assessed. The C¹‐continuous shape functions are based on two main ingredients, which are an Hermitian interpolation scheme and the use of Gauß‐Lobatto‐Legendre (GLL) points. Employing GLL‐points does not only avoid Runge oscillations, but also yields a diagonal mass matrix when exploiting the nodal quadrature technique as a mass lumping scheme. Especially in high‐frequency transient analyses, where often explicit time integration schemes are utilized, having a diagonal mass matrix is an attractive property of the proposed element formulation. This is, however, achieved at the cost of an under‐integration of the mass matrix. Therefore, a special focus of this paper is placed on the evaluation of the numerical properties, such as the conditioning of the element matrices and the attainable rates of convergence (ROCs). To this end, the numerical behavior of the SBEs is comprehensively analyzed by means of selected benchmark examples. In a nutshell, the obtained results demonstrate that the element yields good accuracy in combination with an increased efficiency for structural dynamics exploiting the diagonal structure of the mass matrix.

ID-Nummer: Artikel-ID: e202200422
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-246650
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 510 Mathematik
600 Technik, Medizin, angewandte Wissenschaften > 624 Ingenieurbau und Umwelttechnik
Fachbereich(e)/-gebiet(e): 13 Fachbereich Bau- und Umweltingenieurwissenschaften
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik > Fachgebiet Numerische Mechanik
Hinterlegungsdatum: 09 Feb 2024 14:10
Letzte Änderung: 12 Feb 2024 06:27
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen