TU Darmstadt / ULB / TUbiblio

Multi‐Component PtFeCoNi Core‐Shell Nanoparticles on MWCNTs as Promising Bifunctional Catalyst for Oxygen Reduction and Oxygen Evolution Reactions

Braun, Tobias ; Dinda, Sirshendu ; Karkera, Guruprakash ; Melinte, Georgian ; Diemant, Thomas ; Kübel, Christian ; Fichtner, Maximilian ; Pammer, Frank (2024)
Multi‐Component PtFeCoNi Core‐Shell Nanoparticles on MWCNTs as Promising Bifunctional Catalyst for Oxygen Reduction and Oxygen Evolution Reactions.
In: ChemistrySelect, 2023, 8 (29)
doi: 10.26083/tuprints-00024688
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

The development of commercially viable fuel cells and metal‐air batteries requires effective and cheap bifunctional catalysts for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). Multi‐component Pt−Fe−Co−Ni nanoparticles on multi‐walled carbon nanotubes (MWCNTs) were synthesized by wet chemistry route via NaBH₄ reduction of metal salts, followed by sintering at different temperatures. The catalyst demonstrates an excellent ORR activity and a promising OER activity in 0.1 m KOH, with a bi‐functional over‐potential, ΔE of 0.83 V, which is comparable to the values of Pt/C or RuO₂. Furthermore, it shows outstanding long‐term stability in ORR and OER, namely diffusion limited current density at a potential of 0.3 V decreased just by 5.5 % after 10000 cycles in ORR. The results of the PFCN@NT³⁰⁰ indicate a significant effect of the substitution of Pt by the transition metal (TM) and the formation of nanoparticles on the catalytic performance, especially in the OER.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Braun, Tobias ; Dinda, Sirshendu ; Karkera, Guruprakash ; Melinte, Georgian ; Diemant, Thomas ; Kübel, Christian ; Fichtner, Maximilian ; Pammer, Frank
Art des Eintrags: Zweitveröffentlichung
Titel: Multi‐Component PtFeCoNi Core‐Shell Nanoparticles on MWCNTs as Promising Bifunctional Catalyst for Oxygen Reduction and Oxygen Evolution Reactions
Sprache: Englisch
Publikationsjahr: 9 Februar 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2023
Ort der Erstveröffentlichung: Weinheim
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: ChemistrySelect
Jahrgang/Volume einer Zeitschrift: 8
(Heft-)Nummer: 29
Kollation: 9 Seiten
DOI: 10.26083/tuprints-00024688
URL / URN: https://tuprints.ulb.tu-darmstadt.de/24688
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

The development of commercially viable fuel cells and metal‐air batteries requires effective and cheap bifunctional catalysts for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). Multi‐component Pt−Fe−Co−Ni nanoparticles on multi‐walled carbon nanotubes (MWCNTs) were synthesized by wet chemistry route via NaBH₄ reduction of metal salts, followed by sintering at different temperatures. The catalyst demonstrates an excellent ORR activity and a promising OER activity in 0.1 m KOH, with a bi‐functional over‐potential, ΔE of 0.83 V, which is comparable to the values of Pt/C or RuO₂. Furthermore, it shows outstanding long‐term stability in ORR and OER, namely diffusion limited current density at a potential of 0.3 V decreased just by 5.5 % after 10000 cycles in ORR. The results of the PFCN@NT³⁰⁰ indicate a significant effect of the substitution of Pt by the transition metal (TM) and the formation of nanoparticles on the catalytic performance, especially in the OER.

Alternatives oder übersetztes Abstract:
Alternatives AbstractSprache

Multi-walled carbon nanotubes were functionalized with multi-component Pt−Fe−Co−Ni core-shell nanoparticles that serve as bifunctional ORR/OER-catalyst. The composite shows good electrochemical activity and exceptional long-term stability.

Englisch
Freie Schlagworte: bifunctional electrocatalyst, core-shell nanoparticles, electrocatalysis, OER, ORR
ID-Nummer: Artikel-ID: e202300396
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-246887
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 540 Chemie
600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > In-Situ Elektronenmikroskopie
Hinterlegungsdatum: 09 Feb 2024 13:43
Letzte Änderung: 12 Feb 2024 07:18
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen