TU Darmstadt / ULB / TUbiblio

Cohesive phase-field chemo-mechanical simulations of inter- and trans- granular fractures in polycrystalline NMC cathodes via image-based 3D reconstruction

Chen, Wan-Xin ; Allen, Jeffery M. ; Rezaei, Shahed ; Furat, Orkun ; Schmidt, Volker ; Singh, Avtar ; Weddle, Peter J. ; Smith, Kandler ; Xu, Bai-Xiang (2024)
Cohesive phase-field chemo-mechanical simulations of inter- and trans- granular fractures in polycrystalline NMC cathodes via image-based 3D reconstruction.
In: Journal of Power Sources, 596
doi: 10.1016/j.jpowsour.2024.234054
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The optimal design and durable utilization of lithium-ion batteries necessitates an objective modeling approach to understand fracture and failure mechanisms. This paper presents a comprehensive chemo-mechanical modeling study focused on elucidating fracture-induced damage and degradation phenomena in the polycrystalline LixNi0.5Mn0.3Co0.2O (NMC532) cathode. An innovative approach that utilizes image-based reconstructed 3D geometry as finite element (FE) mesh input is employed to enhance the precision in capturing the convoluted architecture and morphological features. For accurately representing the intricate crack configurations within the polycrystalline system, we adopted the cohesive phase-field fracture (CPF) model. Through the integration of advanced image-based geometry reconstruction technique and the promising CPF modeling approach, lithium (de)intercalation induced crack evolution (e.g., nucleation, propagation, branching and diverse modes including inter-/trans-(intra-) granular patterns) and the resulting chemical degradation can be precisely captured, which is also compared and validated with numerical predictions using a continuum damage model. In particular, this model predicts fracture induced degradation under varying fracture properties of grain boundaries and charging rates; the conclusion that NMC particles comprised of larger grains are predicted to have less degradation than those with smaller grains can also be drawn. This comprehensive analysis provides valuable insights into the fracture and degradation within polycrystalline NMC cathodes.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Chen, Wan-Xin ; Allen, Jeffery M. ; Rezaei, Shahed ; Furat, Orkun ; Schmidt, Volker ; Singh, Avtar ; Weddle, Peter J. ; Smith, Kandler ; Xu, Bai-Xiang
Art des Eintrags: Bibliographie
Titel: Cohesive phase-field chemo-mechanical simulations of inter- and trans- granular fractures in polycrystalline NMC cathodes via image-based 3D reconstruction
Sprache: Englisch
Publikationsjahr: März 2024
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Power Sources
Jahrgang/Volume einer Zeitschrift: 596
DOI: 10.1016/j.jpowsour.2024.234054
Kurzbeschreibung (Abstract):

The optimal design and durable utilization of lithium-ion batteries necessitates an objective modeling approach to understand fracture and failure mechanisms. This paper presents a comprehensive chemo-mechanical modeling study focused on elucidating fracture-induced damage and degradation phenomena in the polycrystalline LixNi0.5Mn0.3Co0.2O (NMC532) cathode. An innovative approach that utilizes image-based reconstructed 3D geometry as finite element (FE) mesh input is employed to enhance the precision in capturing the convoluted architecture and morphological features. For accurately representing the intricate crack configurations within the polycrystalline system, we adopted the cohesive phase-field fracture (CPF) model. Through the integration of advanced image-based geometry reconstruction technique and the promising CPF modeling approach, lithium (de)intercalation induced crack evolution (e.g., nucleation, propagation, branching and diverse modes including inter-/trans-(intra-) granular patterns) and the resulting chemical degradation can be precisely captured, which is also compared and validated with numerical predictions using a continuum damage model. In particular, this model predicts fracture induced degradation under varying fracture properties of grain boundaries and charging rates; the conclusion that NMC particles comprised of larger grains are predicted to have less degradation than those with smaller grains can also be drawn. This comprehensive analysis provides valuable insights into the fracture and degradation within polycrystalline NMC cathodes.

Freie Schlagworte: Chemo-mechanical, Phase-field fracture, Inter-/trans-(intra-) granular fractures, Image-based 3D reconstruction, NMC-532 particle
Zusätzliche Informationen:

Artikel-ID: 234054

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Mechanik Funktionaler Materialien
Zentrale Einrichtungen
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ)
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) > Hochleistungsrechner
Hinterlegungsdatum: 08 Feb 2024 06:32
Letzte Änderung: 08 Feb 2024 07:18
PPN: 515338362
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen