Mahn, Tobias ; Wirth, Maximilian ; Klein, Anja (2020)
Game Theoretic Algorithm for Energy Efficient Mobile Edge Computing with Multiple Access Points.
8th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (Mobile Cloud 2020). Oxford, United Kingdom (03.-06.08.2020)
doi: 10.1109/MobileCloud48802.2020.00013
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
This paper considers a Mobile Edge Computing scenario with multiple mobile units (MUs), multiple access points (APs) and one cloudlet server. The MUs have to decide whether offloading their computation tasks to the cloudlet is energy wise beneficial. As there are multiple APs available to connect the MUs to the cloudlet and communication and computation resources have to be shared among all MUs, each MU also has to choose the AP for transmission that minimizes its offloading energy under the given fraction of the overall resources. The problem is formulated as a energy minimization problem with a maximum offloading time constraint. MUs not only need to consider the energy required for local computation or offloading, but simultaneously avoid an overlong processing time of offloaded computation. This joint offloading decision and resource allocation is divided into two subproblems in the proposed approach. The resource allocation problem is reformulated by using Lagrange multipliers and closed-forms for the calculation of the shared resources are found. These results can be integrated into the proposed game theoretic algorithm for the offloading decision problem. The algorithm is based on a potential game and therefore, can be proven to converge to a Nash equilibrium. Numerical results show a benefit of the proposed resource allocation strategy, a performance of the proposed game algorithm near the optimal solution and a fast algorithm execution time that can even be significantly improved by proposed sorting metrics.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2020 |
Autor(en): | Mahn, Tobias ; Wirth, Maximilian ; Klein, Anja |
Art des Eintrags: | Bibliographie |
Titel: | Game Theoretic Algorithm for Energy Efficient Mobile Edge Computing with Multiple Access Points |
Sprache: | Englisch |
Publikationsjahr: | 8 Juli 2020 |
Ort: | Piscataway, NY |
Verlag: | IEEE |
Buchtitel: | Proceedings: 2020 8th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering |
Veranstaltungstitel: | 8th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (Mobile Cloud 2020) |
Veranstaltungsort: | Oxford, United Kingdom |
Veranstaltungsdatum: | 03.-06.08.2020 |
DOI: | 10.1109/MobileCloud48802.2020.00013 |
Kurzbeschreibung (Abstract): | This paper considers a Mobile Edge Computing scenario with multiple mobile units (MUs), multiple access points (APs) and one cloudlet server. The MUs have to decide whether offloading their computation tasks to the cloudlet is energy wise beneficial. As there are multiple APs available to connect the MUs to the cloudlet and communication and computation resources have to be shared among all MUs, each MU also has to choose the AP for transmission that minimizes its offloading energy under the given fraction of the overall resources. The problem is formulated as a energy minimization problem with a maximum offloading time constraint. MUs not only need to consider the energy required for local computation or offloading, but simultaneously avoid an overlong processing time of offloaded computation. This joint offloading decision and resource allocation is divided into two subproblems in the proposed approach. The resource allocation problem is reformulated by using Lagrange multipliers and closed-forms for the calculation of the shared resources are found. These results can be integrated into the proposed game theoretic algorithm for the offloading decision problem. The algorithm is based on a potential game and therefore, can be proven to converge to a Nash equilibrium. Numerical results show a benefit of the proposed resource allocation strategy, a performance of the proposed game algorithm near the optimal solution and a fast algorithm execution time that can even be significantly improved by proposed sorting metrics. |
Freie Schlagworte: | DAAD |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Kommunikationstechnik DFG-Sonderforschungsbereiche (inkl. Transregio) DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > B: Adaptionsmechanismen DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > B: Adaptionsmechanismen > Teilprojekt B3: Adaptionsökonomie DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > C: Kommunikationsmechanismen DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > C: Kommunikationsmechanismen > Teilprojekt C5: Kontextzentrische Sicht |
Hinterlegungsdatum: | 03 Apr 2024 13:12 |
Letzte Änderung: | 31 Jul 2024 12:49 |
PPN: | 520244931 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |