TU Darmstadt / ULB / TUbiblio

Parametrized polyconvex hyperelasticity with physics-augmented neural networks

Klein, Dominik K. ; Roth, Fabian J. ; Valizadeh, Iman ; Weeger, Oliver (2024)
Parametrized polyconvex hyperelasticity with physics-augmented neural networks.
In: Data-Centric Engineering, 2023, 4
doi: 10.26083/tuprints-00026472
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

In the present work, neural networks are applied to formulate parametrized hyperelastic constitutive models. The models fulfill all common mechanical conditions of hyperelasticity by construction. In particular, partially input convex neural network (pICNN) architectures are applied based on feed-forward neural networks. Receiving two different sets of input arguments, pICNNs are convex in one of them, while for the other, they represent arbitrary relationships which are not necessarily convex. In this way, the model can fulfill convexity conditions stemming from mechanical considerations without being too restrictive on the functional relationship in additional parameters, which may not necessarily be convex. Two different models are introduced, where one can represent arbitrary functional relationships in the additional parameters, while the other is monotonic in the additional parameters. As a first proof of concept, the model is calibrated to data generated with two differently parametrized analytical potentials, whereby three different pICNN architectures are investigated. In all cases, the proposed model shows excellent performance.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Klein, Dominik K. ; Roth, Fabian J. ; Valizadeh, Iman ; Weeger, Oliver
Art des Eintrags: Zweitveröffentlichung
Titel: Parametrized polyconvex hyperelasticity with physics-augmented neural networks
Sprache: Englisch
Publikationsjahr: 5 Februar 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2023
Ort der Erstveröffentlichung: Cambridge
Verlag: Cambridge University Press
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Data-Centric Engineering
Jahrgang/Volume einer Zeitschrift: 4
Kollation: 22 Seiten
DOI: 10.26083/tuprints-00026472
URL / URN: https://tuprints.ulb.tu-darmstadt.de/26472
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

In the present work, neural networks are applied to formulate parametrized hyperelastic constitutive models. The models fulfill all common mechanical conditions of hyperelasticity by construction. In particular, partially input convex neural network (pICNN) architectures are applied based on feed-forward neural networks. Receiving two different sets of input arguments, pICNNs are convex in one of them, while for the other, they represent arbitrary relationships which are not necessarily convex. In this way, the model can fulfill convexity conditions stemming from mechanical considerations without being too restrictive on the functional relationship in additional parameters, which may not necessarily be convex. Two different models are introduced, where one can represent arbitrary functional relationships in the additional parameters, while the other is monotonic in the additional parameters. As a first proof of concept, the model is calibrated to data generated with two differently parametrized analytical potentials, whereby three different pICNN architectures are investigated. In all cases, the proposed model shows excellent performance.

Freie Schlagworte: constitutive modeling, hyperelasticity, parametrized material, partially input convex neural networks, physicsaugmented neural networks
ID-Nummer: Artikel-ID: e25
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-264722
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet Cyber-Physische Simulation (CPS)
Hinterlegungsdatum: 05 Feb 2024 11:02
Letzte Änderung: 06 Feb 2024 07:14
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen