TU Darmstadt / ULB / TUbiblio

Learning Mean-Field Control for Delayed Information Load Balancing in Large Queuing Systems

Tahir, Anam ; Cui, Kai ; Koeppl, Heinz (2024)
Learning Mean-Field Control for Delayed Information Load Balancing in Large Queuing Systems.
51st International Conference on Parallel Processing (ICPP ’22). Bordeaux, France (29.08.2022-01.09.2022)
doi: 10.26083/tuprints-00026518
Konferenzveröffentlichung, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Recent years have seen a great increase in the capacity and parallel processing power of data centers and cloud services. To fully utilize the said distributed systems, optimal load balancing for parallel queuing architectures must be realized. Existing state-of-the-art solutions fail to consider the effect of communication delays on the behaviour of very large systems with many clients. In this work, we consider a multi-agent load balancing system, with delayed information, consisting of many clients (load balancers) and many parallel queues. In order to obtain a tractable solution, we model this system as a mean-field control problem with enlarged state-action space in discrete time through exact discretization. Subsequently, we apply policy gradient reinforcement learning algorithms to find an optimal load balancing solution. Here, the discrete-time system model incorporates a synchronization delay under which the queue state information is synchronously broadcasted and updated at all clients. We then provide theoretical performance guarantees for our methodology in large systems. Finally, using experiments, we prove that our approach is not only scalable but also shows good performance when compared to the state-of-the-art power-of-d variant of the Join-the-Shortest-Queue (JSQ) and other policies in the presence of synchronization delays.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2024
Autor(en): Tahir, Anam ; Cui, Kai ; Koeppl, Heinz
Art des Eintrags: Zweitveröffentlichung
Titel: Learning Mean-Field Control for Delayed Information Load Balancing in Large Queuing Systems
Sprache: Englisch
Publikationsjahr: 5 Februar 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2023
Ort der Erstveröffentlichung: New York, NY, USA
Verlag: Association for Computing Machinery
Buchtitel: Proceedings of the 51st International Conference on Parallel Processing
Kollation: 11 ungezählte Seiten
Veranstaltungstitel: 51st International Conference on Parallel Processing (ICPP ’22)
Veranstaltungsort: Bordeaux, France
Veranstaltungsdatum: 29.08.2022-01.09.2022
DOI: 10.26083/tuprints-00026518
URL / URN: https://tuprints.ulb.tu-darmstadt.de/26518
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

Recent years have seen a great increase in the capacity and parallel processing power of data centers and cloud services. To fully utilize the said distributed systems, optimal load balancing for parallel queuing architectures must be realized. Existing state-of-the-art solutions fail to consider the effect of communication delays on the behaviour of very large systems with many clients. In this work, we consider a multi-agent load balancing system, with delayed information, consisting of many clients (load balancers) and many parallel queues. In order to obtain a tractable solution, we model this system as a mean-field control problem with enlarged state-action space in discrete time through exact discretization. Subsequently, we apply policy gradient reinforcement learning algorithms to find an optimal load balancing solution. Here, the discrete-time system model incorporates a synchronization delay under which the queue state information is synchronously broadcasted and updated at all clients. We then provide theoretical performance guarantees for our methodology in large systems. Finally, using experiments, we prove that our approach is not only scalable but also shows good performance when compared to the state-of-the-art power-of-d variant of the Join-the-Shortest-Queue (JSQ) and other policies in the presence of synchronization delays.

Freie Schlagworte: load balancing, parallel systems, mean-field control, reinforcement learning
ID-Nummer: Artikel-Nr: 42
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-265180
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
600 Technik, Medizin, angewandte Wissenschaften > 621.3 Elektrotechnik, Elektronik
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Self-Organizing Systems Lab
Hinterlegungsdatum: 05 Feb 2024 10:55
Letzte Änderung: 12 Mär 2024 09:43
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen