TU Darmstadt / ULB / TUbiblio

Model-Based Condition Monitoring of Modular Process Plants

Wetterich, Philipp ; Kuhr, Maximilian M. G. ; Pelz, Peter F. (2024)
Model-Based Condition Monitoring of Modular Process Plants.
In: Processes, 2023, 11 (9)
doi: 10.26083/tuprints-00026446
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

The process industry is confronted with rising demands for flexibility and efficiency. One way to achieve this is modular process plants, which consist of pre-manufactured modules with their own decentralized intelligence. Plants are then composed of these modules as unchangeable building blocks and can be easily re-configured for different products. Condition monitoring of such plants is necessary, but the available solutions are not applicable. The authors of this paper suggest an approach in which model-based symptoms are derived from a few measurements and observers that are based on the manufacturer’s knowledge. The comparisons of redundant observers lead to residuals that are classified to obtain symptoms. These symptoms can be communicated to the plant control and are inputs to an easily adaptable diagnosis. The implementation and validation at a modular mixing plant showcase the feasibility and potential of this approach.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Wetterich, Philipp ; Kuhr, Maximilian M. G. ; Pelz, Peter F.
Art des Eintrags: Zweitveröffentlichung
Titel: Model-Based Condition Monitoring of Modular Process Plants
Sprache: Englisch
Publikationsjahr: 5 Februar 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2023
Ort der Erstveröffentlichung: Basel
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Processes
Jahrgang/Volume einer Zeitschrift: 11
(Heft-)Nummer: 9
Kollation: 15 Seiten
DOI: 10.26083/tuprints-00026446
URL / URN: https://tuprints.ulb.tu-darmstadt.de/26446
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

The process industry is confronted with rising demands for flexibility and efficiency. One way to achieve this is modular process plants, which consist of pre-manufactured modules with their own decentralized intelligence. Plants are then composed of these modules as unchangeable building blocks and can be easily re-configured for different products. Condition monitoring of such plants is necessary, but the available solutions are not applicable. The authors of this paper suggest an approach in which model-based symptoms are derived from a few measurements and observers that are based on the manufacturer’s knowledge. The comparisons of redundant observers lead to residuals that are classified to obtain symptoms. These symptoms can be communicated to the plant control and are inputs to an easily adaptable diagnosis. The implementation and validation at a modular mixing plant showcase the feasibility and potential of this approach.

Freie Schlagworte: condition monitoring, soft sensors, fault diagnosis, modularization
ID-Nummer: Artikel-ID: 2733
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-264468
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Fluidsystemtechnik (FST) (seit 01.10.2006)
Hinterlegungsdatum: 05 Feb 2024 10:39
Letzte Änderung: 06 Feb 2024 07:05
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen