TU Darmstadt / ULB / TUbiblio

Preserving Privacy in Distributed LASSO

Zhang, Wen ; Fan, Yufan ; Pesavento, Marius (2023)
Preserving Privacy in Distributed LASSO.
9th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing. Herradura, Costa Rica (10.12. - 13.12.2023)
doi: 10.1109/CAMSAP58249.2023.10403477
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

In this paper, we extend the Soft-Thresholding with Exact Line search Algorithm (STELA) to solve the LASSO problem in a fully decentralized manner, where each agent solves its local minimization problem, and cooperates only with its neighbors to update the local solution. Moreover, the privacy of the local data is maintained during the communication of agents via the privacy-preserving average consensus (PPAC) approach which avoids revealing local information from other agents as well as potential eavesdroppers. We examine the proposed algorithm with synthetic data. Simulation results show that with a similar privacy level, the proposed algorithm has a faster convergence speed and better accuracy compared to the state-of-the-art privacy-preserving Primal-Dual Method of Multipliers (p-PDMM) algorithm.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2023
Autor(en): Zhang, Wen ; Fan, Yufan ; Pesavento, Marius
Art des Eintrags: Bibliographie
Titel: Preserving Privacy in Distributed LASSO
Sprache: Englisch
Publikationsjahr: 14 Dezember 2023
Ort: Piscataway, NY
Verlag: IEEE
Buchtitel: 2023 IEEE 9th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)
Veranstaltungstitel: 9th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing
Veranstaltungsort: Herradura, Costa Rica
Veranstaltungsdatum: 10.12. - 13.12.2023
DOI: 10.1109/CAMSAP58249.2023.10403477
Kurzbeschreibung (Abstract):

In this paper, we extend the Soft-Thresholding with Exact Line search Algorithm (STELA) to solve the LASSO problem in a fully decentralized manner, where each agent solves its local minimization problem, and cooperates only with its neighbors to update the local solution. Moreover, the privacy of the local data is maintained during the communication of agents via the privacy-preserving average consensus (PPAC) approach which avoids revealing local information from other agents as well as potential eavesdroppers. We examine the proposed algorithm with synthetic data. Simulation results show that with a similar privacy level, the proposed algorithm has a faster convergence speed and better accuracy compared to the state-of-the-art privacy-preserving Primal-Dual Method of Multipliers (p-PDMM) algorithm.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Nachrichtentechnische Systeme
Hinterlegungsdatum: 03 Apr 2024 12:58
Letzte Änderung: 31 Jul 2024 12:13
PPN: 520243439
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen