TU Darmstadt / ULB / TUbiblio

Compensation of Oxygen Doping in p‐Type Organic Field‐Effect Transistors Utilizing Immobilized n‐Dopants

Barf, Marc‐Michael ; Benneckendorf, Frank S. ; Reiser, Patrick ; Bäuerle, Rainer ; Köntges, Wolfgang ; Müller, Lars ; Pfannmöller, Martin ; Beck, Sebastian ; Mankel, Eric ; Freudenberg, Jan ; Jänsch, Daniel ; Tisserant, Jean‐Nicolas ; Lovrincic, Robert ; Schröder, Rasmus R. ; Bunz, Uwe H. F. ; Pucci, Annemarie ; Jaegermann, Wolfram ; Kowalsky, Wolfgang ; Müllen, Klaus (2024)
Compensation of Oxygen Doping in p‐Type Organic Field‐Effect Transistors Utilizing Immobilized n‐Dopants.
In: Advanced Materials Technologies, 2021, 6 (2)
doi: 10.26083/tuprints-00017765
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Poly(3‐hexyl‐thiophene‐2,5‐diyl) (P3HT) is one of the most commonly used materials in organic electronics, yet it is considered to be rather unattractive for organic field‐effect transistors (OFETs) due to its tendency to oxidize under aerobic conditions. Strong p‐doping of P3HT by oxygen causes high off‐currents in such devices opposing the desired high on/off‐ratios. Herein, a new application‐oriented method involving the recently developed immobilizable organic n‐dopant 2‐(2‐((4‐azidobenzyl)oxy)phenyl)‐1,3‐dimethyl‐2,3‐dihydro‐1H‐benzoimidazol (o‐AzBnO‐DMBI) is presented allowing to process and operate P3HT OFETs in air. The n‐dopants compensate oxygen doping by trapping generated free holes, thereby rediminishing OFET off‐currents by approximately two orders of magnitude. At the same time, field‐effect mobilities remain high in the order of up to 0.19 cm² V⁻¹ s⁻¹. Due to the covalent attachment of the dopants to the host matrix after photochemical activation, a drift of the otherwise mobile ions within the device is prevented even at high operating voltages and, thus, hysteresis in the corresponding transfer characteristics is kept low. In this manner, the air instability of P3HT OFETs is successfully resolved paving an auspicious way toward OFET mass production. As the immobilization process employed here is nonspecific with respect to the host material, this strategy is transferable to other p‐type semiconductors.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Barf, Marc‐Michael ; Benneckendorf, Frank S. ; Reiser, Patrick ; Bäuerle, Rainer ; Köntges, Wolfgang ; Müller, Lars ; Pfannmöller, Martin ; Beck, Sebastian ; Mankel, Eric ; Freudenberg, Jan ; Jänsch, Daniel ; Tisserant, Jean‐Nicolas ; Lovrincic, Robert ; Schröder, Rasmus R. ; Bunz, Uwe H. F. ; Pucci, Annemarie ; Jaegermann, Wolfram ; Kowalsky, Wolfgang ; Müllen, Klaus
Art des Eintrags: Zweitveröffentlichung
Titel: Compensation of Oxygen Doping in p‐Type Organic Field‐Effect Transistors Utilizing Immobilized n‐Dopants
Sprache: Englisch
Publikationsjahr: 30 Januar 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2021
Ort der Erstveröffentlichung: Weinheim
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Materials Technologies
Jahrgang/Volume einer Zeitschrift: 6
(Heft-)Nummer: 2
Kollation: 8 Seiten
DOI: 10.26083/tuprints-00017765
URL / URN: https://tuprints.ulb.tu-darmstadt.de/17765
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Poly(3‐hexyl‐thiophene‐2,5‐diyl) (P3HT) is one of the most commonly used materials in organic electronics, yet it is considered to be rather unattractive for organic field‐effect transistors (OFETs) due to its tendency to oxidize under aerobic conditions. Strong p‐doping of P3HT by oxygen causes high off‐currents in such devices opposing the desired high on/off‐ratios. Herein, a new application‐oriented method involving the recently developed immobilizable organic n‐dopant 2‐(2‐((4‐azidobenzyl)oxy)phenyl)‐1,3‐dimethyl‐2,3‐dihydro‐1H‐benzoimidazol (o‐AzBnO‐DMBI) is presented allowing to process and operate P3HT OFETs in air. The n‐dopants compensate oxygen doping by trapping generated free holes, thereby rediminishing OFET off‐currents by approximately two orders of magnitude. At the same time, field‐effect mobilities remain high in the order of up to 0.19 cm² V⁻¹ s⁻¹. Due to the covalent attachment of the dopants to the host matrix after photochemical activation, a drift of the otherwise mobile ions within the device is prevented even at high operating voltages and, thus, hysteresis in the corresponding transfer characteristics is kept low. In this manner, the air instability of P3HT OFETs is successfully resolved paving an auspicious way toward OFET mass production. As the immobilization process employed here is nonspecific with respect to the host material, this strategy is transferable to other p‐type semiconductors.

Freie Schlagworte: compensation doping, dopant migration and immobilization, molecular doping, organic field‐effect transistors, organic semiconductors
ID-Nummer: Artikel-ID: 2000556
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-177656
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Oberflächenforschung
Hinterlegungsdatum: 30 Jan 2024 13:42
Letzte Änderung: 31 Jan 2024 07:32
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen