Barf, Marc‐Michael ; Benneckendorf, Frank S. ; Reiser, Patrick ; Bäuerle, Rainer ; Köntges, Wolfgang ; Müller, Lars ; Pfannmöller, Martin ; Beck, Sebastian ; Mankel, Eric ; Freudenberg, Jan ; Jänsch, Daniel ; Tisserant, Jean‐Nicolas ; Lovrincic, Robert ; Schröder, Rasmus R. ; Bunz, Uwe H. F. ; Pucci, Annemarie ; Jaegermann, Wolfram ; Kowalsky, Wolfgang ; Müllen, Klaus (2024)
Compensation of Oxygen Doping in p‐Type Organic Field‐Effect Transistors Utilizing Immobilized n‐Dopants.
In: Advanced Materials Technologies, 2021, 6 (2)
doi: 10.26083/tuprints-00017765
Artikel, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
Poly(3‐hexyl‐thiophene‐2,5‐diyl) (P3HT) is one of the most commonly used materials in organic electronics, yet it is considered to be rather unattractive for organic field‐effect transistors (OFETs) due to its tendency to oxidize under aerobic conditions. Strong p‐doping of P3HT by oxygen causes high off‐currents in such devices opposing the desired high on/off‐ratios. Herein, a new application‐oriented method involving the recently developed immobilizable organic n‐dopant 2‐(2‐((4‐azidobenzyl)oxy)phenyl)‐1,3‐dimethyl‐2,3‐dihydro‐1H‐benzoimidazol (o‐AzBnO‐DMBI) is presented allowing to process and operate P3HT OFETs in air. The n‐dopants compensate oxygen doping by trapping generated free holes, thereby rediminishing OFET off‐currents by approximately two orders of magnitude. At the same time, field‐effect mobilities remain high in the order of up to 0.19 cm² V⁻¹ s⁻¹. Due to the covalent attachment of the dopants to the host matrix after photochemical activation, a drift of the otherwise mobile ions within the device is prevented even at high operating voltages and, thus, hysteresis in the corresponding transfer characteristics is kept low. In this manner, the air instability of P3HT OFETs is successfully resolved paving an auspicious way toward OFET mass production. As the immobilization process employed here is nonspecific with respect to the host material, this strategy is transferable to other p‐type semiconductors.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2024 |
Autor(en): | Barf, Marc‐Michael ; Benneckendorf, Frank S. ; Reiser, Patrick ; Bäuerle, Rainer ; Köntges, Wolfgang ; Müller, Lars ; Pfannmöller, Martin ; Beck, Sebastian ; Mankel, Eric ; Freudenberg, Jan ; Jänsch, Daniel ; Tisserant, Jean‐Nicolas ; Lovrincic, Robert ; Schröder, Rasmus R. ; Bunz, Uwe H. F. ; Pucci, Annemarie ; Jaegermann, Wolfram ; Kowalsky, Wolfgang ; Müllen, Klaus |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | Compensation of Oxygen Doping in p‐Type Organic Field‐Effect Transistors Utilizing Immobilized n‐Dopants |
Sprache: | Englisch |
Publikationsjahr: | 30 Januar 2024 |
Ort: | Darmstadt |
Publikationsdatum der Erstveröffentlichung: | 2021 |
Ort der Erstveröffentlichung: | Weinheim |
Verlag: | Wiley-VCH |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Advanced Materials Technologies |
Jahrgang/Volume einer Zeitschrift: | 6 |
(Heft-)Nummer: | 2 |
Kollation: | 8 Seiten |
DOI: | 10.26083/tuprints-00017765 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/17765 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichung DeepGreen |
Kurzbeschreibung (Abstract): | Poly(3‐hexyl‐thiophene‐2,5‐diyl) (P3HT) is one of the most commonly used materials in organic electronics, yet it is considered to be rather unattractive for organic field‐effect transistors (OFETs) due to its tendency to oxidize under aerobic conditions. Strong p‐doping of P3HT by oxygen causes high off‐currents in such devices opposing the desired high on/off‐ratios. Herein, a new application‐oriented method involving the recently developed immobilizable organic n‐dopant 2‐(2‐((4‐azidobenzyl)oxy)phenyl)‐1,3‐dimethyl‐2,3‐dihydro‐1H‐benzoimidazol (o‐AzBnO‐DMBI) is presented allowing to process and operate P3HT OFETs in air. The n‐dopants compensate oxygen doping by trapping generated free holes, thereby rediminishing OFET off‐currents by approximately two orders of magnitude. At the same time, field‐effect mobilities remain high in the order of up to 0.19 cm² V⁻¹ s⁻¹. Due to the covalent attachment of the dopants to the host matrix after photochemical activation, a drift of the otherwise mobile ions within the device is prevented even at high operating voltages and, thus, hysteresis in the corresponding transfer characteristics is kept low. In this manner, the air instability of P3HT OFETs is successfully resolved paving an auspicious way toward OFET mass production. As the immobilization process employed here is nonspecific with respect to the host material, this strategy is transferable to other p‐type semiconductors. |
Freie Schlagworte: | compensation doping, dopant migration and immobilization, molecular doping, organic field‐effect transistors, organic semiconductors |
ID-Nummer: | Artikel-ID: 2000556 |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-177656 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Oberflächenforschung |
Hinterlegungsdatum: | 30 Jan 2024 13:42 |
Letzte Änderung: | 31 Jan 2024 07:32 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- Compensation of Oxygen Doping in p‐Type Organic Field‐Effect Transistors Utilizing Immobilized n‐Dopants. (deposited 30 Jan 2024 13:42) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |