Kirillov, Oleg N. (2024)
Untwisting the Campbell diagrams of weakly anisotropic rotor systems.
In: Journal of Physics: Conference Series, 2009, 181 (1)
doi: 10.26083/tuprints-00020682
Artikel, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
A brake can be modeled as an axi-symmetric rotor perturbed by dissipative, conservative, and non-conservative positional forces originated at the frictional contact with the anisotropic stator. The Campbell diagram of the unperturbed system is a mesh-like structure in the frequency-speed plane with double eigenfrequencies at the nodes. The diagram is convenient for the analysis of the traveling waves in the rotating elastic continuum. Computing sensitivities of the doublets we find that at every particular node the untwisting of the mesh into the branches of complex eigenvalues is generically determined by only four 2×2 sub-blocks of the perturbing matrix. Selection of the unstable modes that cause self-excited vibrations in the subcritical speed range, is governed by the exceptional points at the corners of the singular eigenvalue surface–`double coffee-filter'–which is typical also in the problems of electromagnetic and acoustic wave propagation in non-rotating anisotropic chiral media. As a mechanical example a model of a rotating shaft is studied in detail.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2024 |
Autor(en): | Kirillov, Oleg N. |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | Untwisting the Campbell diagrams of weakly anisotropic rotor systems |
Sprache: | Englisch |
Publikationsjahr: | 30 Januar 2024 |
Ort: | Darmstadt |
Publikationsdatum der Erstveröffentlichung: | August 2009 |
Ort der Erstveröffentlichung: | Bristol |
Verlag: | IOP Publishing |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Journal of Physics: Conference Series |
Jahrgang/Volume einer Zeitschrift: | 181 |
(Heft-)Nummer: | 1 |
Kollation: | 11 Seiten |
DOI: | 10.26083/tuprints-00020682 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/20682 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichung DeepGreen |
Kurzbeschreibung (Abstract): | A brake can be modeled as an axi-symmetric rotor perturbed by dissipative, conservative, and non-conservative positional forces originated at the frictional contact with the anisotropic stator. The Campbell diagram of the unperturbed system is a mesh-like structure in the frequency-speed plane with double eigenfrequencies at the nodes. The diagram is convenient for the analysis of the traveling waves in the rotating elastic continuum. Computing sensitivities of the doublets we find that at every particular node the untwisting of the mesh into the branches of complex eigenvalues is generically determined by only four 2×2 sub-blocks of the perturbing matrix. Selection of the unstable modes that cause self-excited vibrations in the subcritical speed range, is governed by the exceptional points at the corners of the singular eigenvalue surface–`double coffee-filter'–which is typical also in the problems of electromagnetic and acoustic wave propagation in non-rotating anisotropic chiral media. As a mechanical example a model of a rotating shaft is studied in detail. |
ID-Nummer: | Artikel-ID: 012023 |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-206822 |
Zusätzliche Informationen: | 7TH INTERNATIONAL CONFERENCE ON MODERN PRACTICE IN STRESS AND VIBRATION ANALYSIS 8–10 September 2009, Murray Edwards College, Cambridge, UK |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau |
Fachbereich(e)/-gebiet(e): | 16 Fachbereich Maschinenbau 16 Fachbereich Maschinenbau > Dynamik und Schwingungen |
Hinterlegungsdatum: | 30 Jan 2024 13:06 |
Letzte Änderung: | 31 Jan 2024 06:55 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- Untwisting the Campbell diagrams of weakly anisotropic rotor systems. (deposited 30 Jan 2024 13:06) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |