TU Darmstadt / ULB / TUbiblio

Gassing Behavior of High‐Entropy Oxide Anode and Oxyfluoride Cathode Probed Using Differential Electrochemical Mass Spectrometry

Breitung, Ben ; Wang, Qingsong ; Schiele, Alexander ; Tripković, Đorđije ; Sarkar, Abhishek ; Velasco, Leonardo ; Wang, Di ; Bhattacharya, Subramshu S. ; Hahn, Horst ; Brezesinski, Torsten (2024)
Gassing Behavior of High‐Entropy Oxide Anode and Oxyfluoride Cathode Probed Using Differential Electrochemical Mass Spectrometry.
In: Batteries & Supercaps, 2020, 3 (4)
doi: 10.26083/tuprints-00016729
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Multicomponent materials may exhibit favorable Li‐storage properties because of entropy stabilization. While the first examples of high‐entropy oxides and oxyfluorides show good cycling performance, they suffer from various problems. Here, we report on side reactions leading to gas evolution in Li‐ion cells using rock‐salt (Co₀.₂Cu₀.₂Mg₀.₂Ni₀.₂Zn₀.₂)O (HEO) or Li(Co₀.₂Cu₀.₂Mg₀.₂Ni₀.₂Zn₀.₂)OF (Li(HEO)F). Differential electrochemical mass spectrometry indicates that a robust solid‐electrolyte interphase layer is formed on the HEO anode, even when using an additive‐free electrolyte. For the Li(HEO)F cathode, the cumulative amount of gases is found by pressure measurements to depend strongly on the upper cutoff potential used during cycling. Cells charged to 5.0 V versus Li⁺/Li show the evolution of O₂, H₂, CO₂, CO and POF₃, with the latter species being indirectly due to lattice O₂ release as confirmed by electron energy loss spectroscopy. This result attests to the negative effect that lattice instability at high potentials has on the gassing.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Breitung, Ben ; Wang, Qingsong ; Schiele, Alexander ; Tripković, Đorđije ; Sarkar, Abhishek ; Velasco, Leonardo ; Wang, Di ; Bhattacharya, Subramshu S. ; Hahn, Horst ; Brezesinski, Torsten
Art des Eintrags: Zweitveröffentlichung
Titel: Gassing Behavior of High‐Entropy Oxide Anode and Oxyfluoride Cathode Probed Using Differential Electrochemical Mass Spectrometry
Sprache: Englisch
Publikationsjahr: 29 Januar 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2020
Ort der Erstveröffentlichung: Weinheim
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Batteries & Supercaps
Jahrgang/Volume einer Zeitschrift: 3
(Heft-)Nummer: 4
DOI: 10.26083/tuprints-00016729
URL / URN: https://tuprints.ulb.tu-darmstadt.de/16729
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Multicomponent materials may exhibit favorable Li‐storage properties because of entropy stabilization. While the first examples of high‐entropy oxides and oxyfluorides show good cycling performance, they suffer from various problems. Here, we report on side reactions leading to gas evolution in Li‐ion cells using rock‐salt (Co₀.₂Cu₀.₂Mg₀.₂Ni₀.₂Zn₀.₂)O (HEO) or Li(Co₀.₂Cu₀.₂Mg₀.₂Ni₀.₂Zn₀.₂)OF (Li(HEO)F). Differential electrochemical mass spectrometry indicates that a robust solid‐electrolyte interphase layer is formed on the HEO anode, even when using an additive‐free electrolyte. For the Li(HEO)F cathode, the cumulative amount of gases is found by pressure measurements to depend strongly on the upper cutoff potential used during cycling. Cells charged to 5.0 V versus Li⁺/Li show the evolution of O₂, H₂, CO₂, CO and POF₃, with the latter species being indirectly due to lattice O₂ release as confirmed by electron energy loss spectroscopy. This result attests to the negative effect that lattice instability at high potentials has on the gassing.

Alternatives oder übersetztes Abstract:
Alternatives AbstractSprache

Which gas will it be? Multicomponent oxides and oxyfluorides are promising electrode materials for battery applications because of their robust performance enabled by entropy stabilization. This work provides insight into adverse side reactions on both cathode, Li(Co₀.₂Cu₀.₂Mg₀.₂Ni₀.₂Zn₀.₂)OF, and anode, (Co₀.₂Cu₀.₂Mg₀.₂Ni₀.₂Zn₀.₂)O, leading to gas evolution in Li-ion cells during cycling operation.

Englisch
Freie Schlagworte: lithium-ion battery, rock-salt structure, entropy stabilization, interfacial reactivity, oxygen evolution
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-167297
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Gemeinschaftslabor Nanomaterialien
Hinterlegungsdatum: 29 Jan 2024 13:35
Letzte Änderung: 30 Jan 2024 07:46
PPN:
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen