TU Darmstadt / ULB / TUbiblio

Ink‐Jet Printable, Self‐Assembled, and Chemically Crosslinked Ion‐Gel as Electrolyte for Thin Film, Printable Transistors

Jeong, Jaehoon ; Marques, Gabriel Cadilha ; Feng, Xiaowei ; Boll, Dominic ; Singaraju, Surya Abhishek ; Aghassi‐Hagmann, Jasmin ; Hahn, Horst ; Breitung, Ben (2024)
Ink‐Jet Printable, Self‐Assembled, and Chemically Crosslinked Ion‐Gel as Electrolyte for Thin Film, Printable Transistors.
In: Advanced Materials Interfaces, 2019, 6 (21)
doi: 10.26083/tuprints-00017026
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Electrolyte‐gated transistors (EGTs) represent an interesting alternative to conventional dielectric‐gating to reduce the required high supply voltage for printed electronic applications. Here, a type of ink‐jet printable ion‐gel is introduced and optimized to fabricate a chemically crosslinked ion‐gel by self‐assembled gelation, without additional crosslinking processes, e.g., UV‐curing. For the self‐assembled gelation, poly(vinyl alcohol) and poly(ethylene‐alt‐maleic anhydride) are used as the polymer backbone and chemical crosslinker, respectively, and 1‐ethyl‐3‐methylimidazolium trifluoromethanesulfonate ([EMIM][OTf]) is utilized as an ionic species to ensure ionic conductivity. The as‐synthesized ion‐gel exhibits an ionic conductivity of ≈5 mS cm⁻¹ and an effective capacitance of 5.4 µF cm⁻² at 1 Hz. The ion‐gel is successfully employed in EGTs with an indium oxide (In₂O₃) channel, which shows on/off‐ratios of up to 1.3 × 10⁶ and a subthreshold swing of 80.62 mV dec⁻¹.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Jeong, Jaehoon ; Marques, Gabriel Cadilha ; Feng, Xiaowei ; Boll, Dominic ; Singaraju, Surya Abhishek ; Aghassi‐Hagmann, Jasmin ; Hahn, Horst ; Breitung, Ben
Art des Eintrags: Zweitveröffentlichung
Titel: Ink‐Jet Printable, Self‐Assembled, and Chemically Crosslinked Ion‐Gel as Electrolyte for Thin Film, Printable Transistors
Sprache: Englisch
Publikationsjahr: 29 Januar 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2019
Ort der Erstveröffentlichung: Weinheim
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Materials Interfaces
Jahrgang/Volume einer Zeitschrift: 6
(Heft-)Nummer: 21
Kollation: 7 Seiten
DOI: 10.26083/tuprints-00017026
URL / URN: https://tuprints.ulb.tu-darmstadt.de/17026
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Electrolyte‐gated transistors (EGTs) represent an interesting alternative to conventional dielectric‐gating to reduce the required high supply voltage for printed electronic applications. Here, a type of ink‐jet printable ion‐gel is introduced and optimized to fabricate a chemically crosslinked ion‐gel by self‐assembled gelation, without additional crosslinking processes, e.g., UV‐curing. For the self‐assembled gelation, poly(vinyl alcohol) and poly(ethylene‐alt‐maleic anhydride) are used as the polymer backbone and chemical crosslinker, respectively, and 1‐ethyl‐3‐methylimidazolium trifluoromethanesulfonate ([EMIM][OTf]) is utilized as an ionic species to ensure ionic conductivity. The as‐synthesized ion‐gel exhibits an ionic conductivity of ≈5 mS cm⁻¹ and an effective capacitance of 5.4 µF cm⁻² at 1 Hz. The ion‐gel is successfully employed in EGTs with an indium oxide (In₂O₃) channel, which shows on/off‐ratios of up to 1.3 × 10⁶ and a subthreshold swing of 80.62 mV dec⁻¹.

Freie Schlagworte: electrolyte‐gated transistors, ink‐jet print, ion‐gels, ionic liquids, printed electronics
ID-Nummer: 1901074
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-170262
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Gemeinschaftslabor Nanomaterialien
Hinterlegungsdatum: 29 Jan 2024 13:47
Letzte Änderung: 30 Jan 2024 07:21
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen