TU Darmstadt / ULB / TUbiblio

Rheological modelling of viscoelastic fluid in a generic gap of screw pump

Mehrnia, Seyedmajid ; Kerres, Lara ; Kuhr, Maximilian M. G. ; Pelz, Peter F. (2024)
Rheological modelling of viscoelastic fluid in a generic gap of screw pump.
International Conference on Screw Machines (ICSM 2022). Dortmund, Germany (07.09.2022-08.09.2022)
doi: 10.26083/tuprints-00026566
Konferenzveröffentlichung, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

In this study, the leakage of a non-Newtonian fluid, i.e. silicone oil, in a generic gap was numerically investigated. A CFD tool is used to determine the relationship between leakage flow, gap length and pressure difference. The investigated fluid is viscoelastic and its properties are modelled by a Maxwell equation. The Maxwell model can be used to precisely define the phenomenon of stress relaxation. Moreover, a comparison of the viscosity of measured data with simplified models shows that the Maxwell model is best suited for viscosity prediction. Furthermore, simulation results showed that at low pressures, leakage is reduced by decreasing the gap angle. However, this effect changes with increasing viscosity and relaxation time of the molecule. To determine the pressure drop, the Bagley plot is used. The results confirmed that as the shear rate increases, the elastic pressure drop values increase. In addition, the leakage flow increases with an increasing slenderness ratio.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2024
Autor(en): Mehrnia, Seyedmajid ; Kerres, Lara ; Kuhr, Maximilian M. G. ; Pelz, Peter F.
Art des Eintrags: Zweitveröffentlichung
Titel: Rheological modelling of viscoelastic fluid in a generic gap of screw pump
Sprache: Englisch
Publikationsjahr: 29 Januar 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2022
Ort der Erstveröffentlichung: London [u.a.]
Verlag: IOP Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: IOP Conference Series: Materials Science and Engineering
Jahrgang/Volume einer Zeitschrift: 1267
Kollation: 14 Seiten
Veranstaltungstitel: International Conference on Screw Machines (ICSM 2022)
Veranstaltungsort: Dortmund, Germany
Veranstaltungsdatum: 07.09.2022-08.09.2022
DOI: 10.26083/tuprints-00026566
URL / URN: https://tuprints.ulb.tu-darmstadt.de/26566
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

In this study, the leakage of a non-Newtonian fluid, i.e. silicone oil, in a generic gap was numerically investigated. A CFD tool is used to determine the relationship between leakage flow, gap length and pressure difference. The investigated fluid is viscoelastic and its properties are modelled by a Maxwell equation. The Maxwell model can be used to precisely define the phenomenon of stress relaxation. Moreover, a comparison of the viscosity of measured data with simplified models shows that the Maxwell model is best suited for viscosity prediction. Furthermore, simulation results showed that at low pressures, leakage is reduced by decreasing the gap angle. However, this effect changes with increasing viscosity and relaxation time of the molecule. To determine the pressure drop, the Bagley plot is used. The results confirmed that as the shear rate increases, the elastic pressure drop values increase. In addition, the leakage flow increases with an increasing slenderness ratio.

ID-Nummer: Artikel-ID: 012013
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-265661
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Fluidsystemtechnik (FST) (seit 01.10.2006)
Hinterlegungsdatum: 29 Jan 2024 10:52
Letzte Änderung: 30 Jan 2024 06:50
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen