Yildiz, Ömer Faruk ; Fritz, Alexander ; Storch, Julian ; Kátai, András ; Ribecky, Sebastian ; Hofmann, Peter ; Talagini Ashoka, Anitha Bhat ; Fassbender, Rene ; Marckmann, Hannes ; Grollmisch, Sascha ; Jansen, Stefan ; Adams, Christian ; Kroh, Irina ; Zaleski, Olgierd ; Manohar, Aswin ; Keuchel, Sören ; Schröder, Thorben ; Ren, Yaxiong ; Boni, Christiano de ; Balestra, Italo ; Bös, Joachim ; Ferretti, Raphael ; Schötz, Johannes ; Merschroth, Holger ; Gross, Peter ; Weigold, Matthias (2023)
Automated quality inspection in additive manufacturing for lightweight construction: a new approach based on virtual sonic data and machine learning (ML-S-LeAF).
Deutsche Jahrestagung für Akustik 2023. Hamburg, Germany (06.03.2023-09.03.2023)
doi: 10.24406/h-442659
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
Powder bed fusion with laser beam describes a popular additive manufacturing technique that allows for the creation of complex three-dimensional shapes for lightweight construction. However, the current melting and solidification processes may introduce defects that lead to printed components that do not meet the desired product quality requirements and standards. Automated process monitoring may aid in exhausting the full potential of powder bed fusion by reducing rejects, saving resources at the same time, and subsequently ensuring high product quality. We therefore propose to utilize machine learning algorithms with training data obtained directly from in situ measurements using acoustic emissions sensors as well as numerically from supplementary acoustics simulations. Here we outline the project and give the strategic roadmap for developing reliable methods that are capable of recognizing deviations from common system operations in the printing process due to defects and other artifacts. This work includes a preview of intermediate results from first machine learning experiments. Additionally, an early comparison of measurement and simulation data is given.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2023 |
Autor(en): | Yildiz, Ömer Faruk ; Fritz, Alexander ; Storch, Julian ; Kátai, András ; Ribecky, Sebastian ; Hofmann, Peter ; Talagini Ashoka, Anitha Bhat ; Fassbender, Rene ; Marckmann, Hannes ; Grollmisch, Sascha ; Jansen, Stefan ; Adams, Christian ; Kroh, Irina ; Zaleski, Olgierd ; Manohar, Aswin ; Keuchel, Sören ; Schröder, Thorben ; Ren, Yaxiong ; Boni, Christiano de ; Balestra, Italo ; Bös, Joachim ; Ferretti, Raphael ; Schötz, Johannes ; Merschroth, Holger ; Gross, Peter ; Weigold, Matthias |
Art des Eintrags: | Bibliographie |
Titel: | Automated quality inspection in additive manufacturing for lightweight construction: a new approach based on virtual sonic data and machine learning (ML-S-LeAF) |
Sprache: | Englisch |
Publikationsjahr: | April 2023 |
Ort: | München |
Verlag: | Fraunhofer-Gesellschaft |
Buchtitel: | DAGA 2023 |
Veranstaltungstitel: | Deutsche Jahrestagung für Akustik 2023 |
Veranstaltungsort: | Hamburg, Germany |
Veranstaltungsdatum: | 06.03.2023-09.03.2023 |
DOI: | 10.24406/h-442659 |
URL / URN: | https://publica.fraunhofer.de/entities/publication/6fcd221a-... |
Kurzbeschreibung (Abstract): | Powder bed fusion with laser beam describes a popular additive manufacturing technique that allows for the creation of complex three-dimensional shapes for lightweight construction. However, the current melting and solidification processes may introduce defects that lead to printed components that do not meet the desired product quality requirements and standards. Automated process monitoring may aid in exhausting the full potential of powder bed fusion by reducing rejects, saving resources at the same time, and subsequently ensuring high product quality. We therefore propose to utilize machine learning algorithms with training data obtained directly from in situ measurements using acoustic emissions sensors as well as numerically from supplementary acoustics simulations. Here we outline the project and give the strategic roadmap for developing reliable methods that are capable of recognizing deviations from common system operations in the printing process due to defects and other artifacts. This work includes a preview of intermediate results from first machine learning experiments. Additionally, an early comparison of measurement and simulation data is given. |
Fachbereich(e)/-gebiet(e): | 16 Fachbereich Maschinenbau 16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW) 16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW) > TEC Fertigungstechnologie |
Hinterlegungsdatum: | 25 Jan 2024 07:04 |
Letzte Änderung: | 25 Jan 2024 07:04 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |