TU Darmstadt / ULB / TUbiblio

Analytical study of solution‐processed tin oxide as electron transport layer in printed perovskite solar cells

Rohnacher, Valentina ; Ullrich, Florian ; Eggers, Helge ; Schackmar, Fabian ; Hell, Sebastian ; Salazar, Adriana ; Huck, Christian ; Hernandez‐Sosa, Gerardo ; Paetzold, Ulrich W. ; Jaegermann, Wolfram ; Pucci, Annemarie (2020)
Analytical study of solution‐processed tin oxide as electron transport layer in printed perovskite solar cells.
In: Advanced Materials Technologies, 6 (2)
doi: 10.1002/admt.202000282
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Solution‐processed tin oxide (SnOₓ) electron transport layers demonstrate excellent performance in various optoelectronic devices and offer the ease of facile and low cost deposition by various printing techniques. The most common precursor solution for the preparation of SnOₓ thin films is SnCl₂ dissolved in ethanol. In order to elucidate the mechanism of the precursor conversion at different annealing temperatures and the optoelectronic performance of the SnOₓ electron transport layer, phonon and vibrational infrared and photoelectron spectroscopies as well as atomic force microscopy are used to probe the chemical, physical, and morphological properties of the SnOₓ thin films. The influence of two different solvents on the layer morphology of SnOₓ thin films is investigated. In both cases, an increasing annealing temperature not only improves the structural and chemical properties of solution‐processed SnOₓ, but also reduces the concentration of tin hydroxide species in the bulk and on the surface of these thin films. As a prototypical example for the high potential of printed SnOₓ layers for solar cells, high performance perovskite solar cells with a stabilized power conversion efficiency of over 15% are presented.

Typ des Eintrags: Artikel
Erschienen: 2020
Autor(en): Rohnacher, Valentina ; Ullrich, Florian ; Eggers, Helge ; Schackmar, Fabian ; Hell, Sebastian ; Salazar, Adriana ; Huck, Christian ; Hernandez‐Sosa, Gerardo ; Paetzold, Ulrich W. ; Jaegermann, Wolfram ; Pucci, Annemarie
Art des Eintrags: Bibliographie
Titel: Analytical study of solution‐processed tin oxide as electron transport layer in printed perovskite solar cells
Sprache: Englisch
Publikationsjahr: 2020
Ort: Weinheim
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Materials Technologies
Jahrgang/Volume einer Zeitschrift: 6
(Heft-)Nummer: 2
Kollation: 8 Seiten
DOI: 10.1002/admt.202000282
Zugehörige Links:
Kurzbeschreibung (Abstract):

Solution‐processed tin oxide (SnOₓ) electron transport layers demonstrate excellent performance in various optoelectronic devices and offer the ease of facile and low cost deposition by various printing techniques. The most common precursor solution for the preparation of SnOₓ thin films is SnCl₂ dissolved in ethanol. In order to elucidate the mechanism of the precursor conversion at different annealing temperatures and the optoelectronic performance of the SnOₓ electron transport layer, phonon and vibrational infrared and photoelectron spectroscopies as well as atomic force microscopy are used to probe the chemical, physical, and morphological properties of the SnOₓ thin films. The influence of two different solvents on the layer morphology of SnOₓ thin films is investigated. In both cases, an increasing annealing temperature not only improves the structural and chemical properties of solution‐processed SnOₓ, but also reduces the concentration of tin hydroxide species in the bulk and on the surface of these thin films. As a prototypical example for the high potential of printed SnOₓ layers for solar cells, high performance perovskite solar cells with a stabilized power conversion efficiency of over 15% are presented.

Freie Schlagworte: atomic force microscopy, infrared spectroscopy, perovskite solar cells, photoelectron spectroscopy, tin oxide
ID-Nummer: 2000282
Zusätzliche Informationen:

Artikel-ID: 2000282

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Oberflächenforschung
Hinterlegungsdatum: 24 Jan 2024 07:24
Letzte Änderung: 24 Jan 2024 07:24
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen