Sun, Zhen ; Braack, Malte ; Lang, Jens (2024)
An adaptive moving finite element method for steady low Mach number compressible combustion problems.
In: International Journal for Numerical Methods in Fluids, 2020, 92 (9)
doi: 10.26083/tuprints-00015640
Artikel, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
This work surveys an r‐adaptive moving mesh finite element method for the numerical solution of premixed laminar flame problems. Since the model of chemically reacting flow involves many different modes with diverse length scales, the computation of such a problem is often extremely time‐consuming. Importantly, to capture the significant characteristics of the flame structure when using detailed chemistry, a much more stringent requirement on the spatial resolution of the interior layers of some intermediate species is necessary. Here, we propose a moving mesh method in which the mesh is obtained from the solution of so‐called moving mesh partial differential equations. Such equations result from the variational formulation of a minimization problem for a given target functional that characterizes the inherent difficulty in the numerical approximation of the underlying physical equations. Adaptive mesh movement has emerged as an area of intense research in mesh adaptation in the last decade. With this approach, points are only allowed to be shifted in space leaving the topology of the grid unchanged. In contrast to methods with local refinement, data structure hence is unchanged and load balancing is not an issue as grid points remain on the processor where they are. We will demonstrate the high potential of moving mesh methods for effectively optimizing the distribution of grid points to reach the required resolution for chemically reacting flows with extremely thin boundary layers.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2024 |
Autor(en): | Sun, Zhen ; Braack, Malte ; Lang, Jens |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | An adaptive moving finite element method for steady low Mach number compressible combustion problems |
Sprache: | Englisch |
Publikationsjahr: | 23 Januar 2024 |
Ort: | Darmstadt |
Publikationsdatum der Erstveröffentlichung: | 2020 |
Ort der Erstveröffentlichung: | Chichester |
Verlag: | John Wiley & Sons |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | International Journal for Numerical Methods in Fluids |
Jahrgang/Volume einer Zeitschrift: | 92 |
(Heft-)Nummer: | 9 |
DOI: | 10.26083/tuprints-00015640 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/15640 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichung DeepGreen |
Kurzbeschreibung (Abstract): | This work surveys an r‐adaptive moving mesh finite element method for the numerical solution of premixed laminar flame problems. Since the model of chemically reacting flow involves many different modes with diverse length scales, the computation of such a problem is often extremely time‐consuming. Importantly, to capture the significant characteristics of the flame structure when using detailed chemistry, a much more stringent requirement on the spatial resolution of the interior layers of some intermediate species is necessary. Here, we propose a moving mesh method in which the mesh is obtained from the solution of so‐called moving mesh partial differential equations. Such equations result from the variational formulation of a minimization problem for a given target functional that characterizes the inherent difficulty in the numerical approximation of the underlying physical equations. Adaptive mesh movement has emerged as an area of intense research in mesh adaptation in the last decade. With this approach, points are only allowed to be shifted in space leaving the topology of the grid unchanged. In contrast to methods with local refinement, data structure hence is unchanged and load balancing is not an issue as grid points remain on the processor where they are. We will demonstrate the high potential of moving mesh methods for effectively optimizing the distribution of grid points to reach the required resolution for chemically reacting flows with extremely thin boundary layers. |
Freie Schlagworte: | adaptive moving meshes, low Mach number combustion, Rosenbrock time integrators, stabilized finite elements |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-156409 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Fachbereich(e)/-gebiet(e): | 04 Fachbereich Mathematik 04 Fachbereich Mathematik > Numerik und wissenschaftliches Rechnen |
Hinterlegungsdatum: | 23 Jan 2024 13:45 |
Letzte Änderung: | 05 Mär 2024 12:25 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- An adaptive moving finite element method for steady low Mach number compressible combustion problems. (deposited 23 Jan 2024 13:45) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |