TU Darmstadt / ULB / TUbiblio

Fully Printed Inverters using Metal‐Oxide Semiconductor and Graphene Passives on Flexible Substrates

Singaraju, Surya Abhishek ; Marques, Gabriel Cadilha ; Gruber, Patric ; Kruk, Robert ; Hahn, Horst ; Breitung, Ben ; Aghassi-Hagmann, Jasmin (2024)
Fully Printed Inverters using Metal‐Oxide Semiconductor and Graphene Passives on Flexible Substrates.
In: Physica status solidi (RRL) – Rapid Research Letters, 2020, 14 (9)
doi: 10.26083/tuprints-00015650
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Printed and flexible metal‐oxide transistor technology has recently demonstrated great promise due to its high performance and robust mechanical stability. Herein, fully printed inverter structures using electrolyte‐gated oxide transistors on a flexible polyimide (PI) substrate are discussed in detail. Conductive graphene ink is printed as the passive structures and interconnects. The additive printed transistors on PI substrates show an Ion/Ioff ratio of 106 and show mobilities similar to the state‐of‐the‐art printed transistors on rigid substrates. Printed meander structures of graphene are used as pull‐up resistances in a transistor–resistor logic to create fully printed inverters. The printed and flexible inverters show a signal gain of 3.5 and a propagation delay of 30 ms. These printed inverters are able to withstand a tensile strain of 1.5% following more than 200 cycles of mechanical bending. The stability of the electrical direct current (DC) properties has been observed over a period of 5 weeks. These oxide transistor‐based fully printed inverters are relevant for digital printing methods which could be implemented into roll‐to‐roll processes.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Singaraju, Surya Abhishek ; Marques, Gabriel Cadilha ; Gruber, Patric ; Kruk, Robert ; Hahn, Horst ; Breitung, Ben ; Aghassi-Hagmann, Jasmin
Art des Eintrags: Zweitveröffentlichung
Titel: Fully Printed Inverters using Metal‐Oxide Semiconductor and Graphene Passives on Flexible Substrates
Sprache: Englisch
Publikationsjahr: 23 Januar 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2020
Ort der Erstveröffentlichung: Weinheim
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Physica status solidi (RRL) – Rapid Research Letters
Jahrgang/Volume einer Zeitschrift: 14
(Heft-)Nummer: 9
Kollation: 6 Seiten
DOI: 10.26083/tuprints-00015650
URL / URN: https://tuprints.ulb.tu-darmstadt.de/15650
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Printed and flexible metal‐oxide transistor technology has recently demonstrated great promise due to its high performance and robust mechanical stability. Herein, fully printed inverter structures using electrolyte‐gated oxide transistors on a flexible polyimide (PI) substrate are discussed in detail. Conductive graphene ink is printed as the passive structures and interconnects. The additive printed transistors on PI substrates show an Ion/Ioff ratio of 106 and show mobilities similar to the state‐of‐the‐art printed transistors on rigid substrates. Printed meander structures of graphene are used as pull‐up resistances in a transistor–resistor logic to create fully printed inverters. The printed and flexible inverters show a signal gain of 3.5 and a propagation delay of 30 ms. These printed inverters are able to withstand a tensile strain of 1.5% following more than 200 cycles of mechanical bending. The stability of the electrical direct current (DC) properties has been observed over a period of 5 weeks. These oxide transistor‐based fully printed inverters are relevant for digital printing methods which could be implemented into roll‐to‐roll processes.

Freie Schlagworte: flexible devices, fully printed devices, inverters, metal-oxide transistors, printed graphene, tensile strength
ID-Nummer: 2000252
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-156503
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Gemeinschaftslabor Nanomaterialien
Hinterlegungsdatum: 23 Jan 2024 13:50
Letzte Änderung: 24 Jan 2024 07:14
PPN:
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen