TU Darmstadt / ULB / TUbiblio

Strain‐driven bidirectional spin orientation control in epitaxial high entropy oxide films

Zhao, Zhibo ; Jaiswal, Arun Kumar ; Wang, Di ; Wollersen, Vanessa ; Xiao, Zhengyu ; Pradhan, Gajanan ; Celegato, Federica ; Tiberto, Paola ; Szymczak, Maria ; Dabrowa, Juliusz ; Waqar, Moaz ; Fuchs, Dirk ; Pan, Xiaoqing ; Hahn, Horst ; Kruk, Robert ; Sarkar, Abhishek (2023)
Strain‐driven bidirectional spin orientation control in epitaxial high entropy oxide films.
In: Advanced Science, 10 (27)
doi: 10.1002/advs.202304038
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

High entropy oxides (HEOs), based on the incorporation of multiple‐principal cations into the crystal lattice, offer the possibility to explore previously inaccessible oxide compositions and unconventional properties. Here it is demonstrated that despite the chemical complexity of HEOs external stimuli, such as epitaxial strain, can selectively stabilize certain magneto‐electronic states. Epitaxial (Co₀.₂Cr₀.₂Fe₀.₂Mn₀.₂Ni₀.₂)₃O₄‐HEO thin films are grown in three different strain states: tensile, compressive, and relaxed. A unique coexistence of rocksalt and spinel‐HEO phases, which are fully coherent with no detectable chemical segregation, is revealed by transmission electron microscopy. This dual‐phase coexistence appears as a universal phenomenon in (Co₀.₂Cr₀.₂Fe₀.₂Mn₀.₂Ni₀.₂)₃O₄ epitaxial films. Prominent changes in the magnetic anisotropy and domain structure highlight the strain‐induced bidirectional control of magnetic properties in HEOs. When the films are relaxed, their magnetization behavior is isotropic, similar to that of bulk materials. However, under tensile strain, the hardness of the out‐of‐plane (OOP) axis increases significantly. On the other hand, compressive straining results in an easy OOP magnetization and a maze‐like magnetic domain structure, indicating the perpendicular magnetic anisotropy. Generally, this study emphasizes the adaptability of the high entropy design strategy, which, when combined with coherent strain engineering, opens additional prospects for fine‐tuning properties in oxides.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Zhao, Zhibo ; Jaiswal, Arun Kumar ; Wang, Di ; Wollersen, Vanessa ; Xiao, Zhengyu ; Pradhan, Gajanan ; Celegato, Federica ; Tiberto, Paola ; Szymczak, Maria ; Dabrowa, Juliusz ; Waqar, Moaz ; Fuchs, Dirk ; Pan, Xiaoqing ; Hahn, Horst ; Kruk, Robert ; Sarkar, Abhishek
Art des Eintrags: Bibliographie
Titel: Strain‐driven bidirectional spin orientation control in epitaxial high entropy oxide films
Sprache: Englisch
Publikationsjahr: 2023
Ort: Weinheim
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Science
Jahrgang/Volume einer Zeitschrift: 10
(Heft-)Nummer: 27
Kollation: 10 Seiten
DOI: 10.1002/advs.202304038
Zugehörige Links:
Kurzbeschreibung (Abstract):

High entropy oxides (HEOs), based on the incorporation of multiple‐principal cations into the crystal lattice, offer the possibility to explore previously inaccessible oxide compositions and unconventional properties. Here it is demonstrated that despite the chemical complexity of HEOs external stimuli, such as epitaxial strain, can selectively stabilize certain magneto‐electronic states. Epitaxial (Co₀.₂Cr₀.₂Fe₀.₂Mn₀.₂Ni₀.₂)₃O₄‐HEO thin films are grown in three different strain states: tensile, compressive, and relaxed. A unique coexistence of rocksalt and spinel‐HEO phases, which are fully coherent with no detectable chemical segregation, is revealed by transmission electron microscopy. This dual‐phase coexistence appears as a universal phenomenon in (Co₀.₂Cr₀.₂Fe₀.₂Mn₀.₂Ni₀.₂)₃O₄ epitaxial films. Prominent changes in the magnetic anisotropy and domain structure highlight the strain‐induced bidirectional control of magnetic properties in HEOs. When the films are relaxed, their magnetization behavior is isotropic, similar to that of bulk materials. However, under tensile strain, the hardness of the out‐of‐plane (OOP) axis increases significantly. On the other hand, compressive straining results in an easy OOP magnetization and a maze‐like magnetic domain structure, indicating the perpendicular magnetic anisotropy. Generally, this study emphasizes the adaptability of the high entropy design strategy, which, when combined with coherent strain engineering, opens additional prospects for fine‐tuning properties in oxides.

Freie Schlagworte: dual‐phase coexistence, high entropy oxides, interfacial segregation, perpendicular magnetic anisotropy, strain‐engineering
ID-Nummer: 2304038
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 540 Chemie
600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Gemeinschaftslabor Nanomaterialien
Hinterlegungsdatum: 23 Jan 2024 07:05
Letzte Änderung: 23 Jan 2024 07:05
PPN:
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen