TU Darmstadt / ULB / TUbiblio

The effect of heavy ion irradiation on the forward dissolution rate of borosilicate glasses studied in situ and real time by fluid-cell Raman spectroscopy

Lönartz, Mara Iris ; Dohmen, Lars ; Lenting, Christoph ; Trautmann, Christina ; Lang, Maik ; Geisler, Thorsten (2019)
The effect of heavy ion irradiation on the forward dissolution rate of borosilicate glasses studied in situ and real time by fluid-cell Raman spectroscopy.
In: Materials, 12 (9)
doi: 10.3390/ma12091480
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Borosilicate glasses are the favored material for immobilization of high-level nuclear waste (HLW) from the reprocessing of spent fuel used in nuclear power plants. To assess the long-term stability of nuclear waste glasses, it is crucial to understand how self-irradiation affects the structural state of the glass and influences its dissolution behavior. In this study, we focus on the effect of heavy ion irradiation on the forward dissolution rate of a non-radioactive ternary borosilicate glass. To create extended radiation defects, the glass was subjected to heavy ion irradiation using ¹⁹⁷Au ions that penetrated ~50 µm deep into the glass. The structural damage was characterized by Raman spectroscopy, revealing a significant depolymerization of the silicate and borate network in the irradiated glass and a reduction of the average boron coordination number. Real time, in situ fluid-cell Raman spectroscopic corrosion experiments were performed with the irradiated glass in a silica-undersaturated, 0.5 M NaHCO₃ solution at temperatures between 80 and 85 °C (initial pH = 7.1). The time- and space-resolved in situ Raman data revealed a 3.7 ± 0.5 times increased forward dissolution rate for the irradiated glass compared to the non-irradiated glass, demonstrating a significant impact of irradiation-induced structural damage on the dissolution kinetics.

Typ des Eintrags: Artikel
Erschienen: 2019
Autor(en): Lönartz, Mara Iris ; Dohmen, Lars ; Lenting, Christoph ; Trautmann, Christina ; Lang, Maik ; Geisler, Thorsten
Art des Eintrags: Bibliographie
Titel: The effect of heavy ion irradiation on the forward dissolution rate of borosilicate glasses studied in situ and real time by fluid-cell Raman spectroscopy
Sprache: Englisch
Publikationsjahr: 2019
Ort: Basel
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Materials
Jahrgang/Volume einer Zeitschrift: 12
(Heft-)Nummer: 9
Kollation: 13 Seiten
DOI: 10.3390/ma12091480
Zugehörige Links:
Kurzbeschreibung (Abstract):

Borosilicate glasses are the favored material for immobilization of high-level nuclear waste (HLW) from the reprocessing of spent fuel used in nuclear power plants. To assess the long-term stability of nuclear waste glasses, it is crucial to understand how self-irradiation affects the structural state of the glass and influences its dissolution behavior. In this study, we focus on the effect of heavy ion irradiation on the forward dissolution rate of a non-radioactive ternary borosilicate glass. To create extended radiation defects, the glass was subjected to heavy ion irradiation using ¹⁹⁷Au ions that penetrated ~50 µm deep into the glass. The structural damage was characterized by Raman spectroscopy, revealing a significant depolymerization of the silicate and borate network in the irradiated glass and a reduction of the average boron coordination number. Real time, in situ fluid-cell Raman spectroscopic corrosion experiments were performed with the irradiated glass in a silica-undersaturated, 0.5 M NaHCO₃ solution at temperatures between 80 and 85 °C (initial pH = 7.1). The time- and space-resolved in situ Raman data revealed a 3.7 ± 0.5 times increased forward dissolution rate for the irradiated glass compared to the non-irradiated glass, demonstrating a significant impact of irradiation-induced structural damage on the dissolution kinetics.

Freie Schlagworte: borosilicate glass corrosion, heavy ion irradiation, in situ fluid-cell Raman spectroscopy, forward dissolution rate
Zusätzliche Informationen:

This article belongs to the Special Issue Materials for Nuclear Waste Immobilization

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Ionenstrahlmodifizierte Materialien
Hinterlegungsdatum: 22 Jan 2024 09:21
Letzte Änderung: 29 Feb 2024 10:45
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen