TU Darmstadt / ULB / TUbiblio

Modelling Porous Cementitious Media with/without Integrated Latent Heat Storage: Application Scenario

Nazari Sam, Mona ; Schneider, Jens ; Lutze, Holger V. (2023)
Modelling Porous Cementitious Media with/without Integrated Latent Heat Storage: Application Scenario.
In: Energies, 16 (18)
doi: 10.3390/en16186687
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

This paper presents a methodological approach for the evaluation of the thermal behavior of cementitious porous media with/without integrated latent-heat thermal energy storage (LHTES). To achieve this goal, the Lewis-Nielsen model has been calibrated to predict the insulation properties of mineralized foamed concretes. Two pore-related microstructural fitting parameters, A and Φm, are presented according to the available data in the literature. In this regard, new findings are implemented for the classification of pore structure and prediction of the homogenized thermal conductivity of two-phase cementitious foams with or without phase change materials. The calibration and predictive analyses have been extended to a wide range of experimental data, including variation of binder types, porosities, and latent components. The presented analytical approach appears to agree well with experimental results and can be employed in the design of two-phase mineral foam materials. Then, to assess the thermal behavior of the predicted insulating envelopes, a one-dimensional (1D) enthalpy-based model is used which combines Fourier’s law of heat conduction, the first law of thermodynamics, Lewis-Nielsen conductivities, and the mixture theory for LHTES additions. The results demonstrated the importance of volumetric heat capacity for the thermal inertia of building envelopes.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Nazari Sam, Mona ; Schneider, Jens ; Lutze, Holger V.
Art des Eintrags: Bibliographie
Titel: Modelling Porous Cementitious Media with/without Integrated Latent Heat Storage: Application Scenario
Sprache: Englisch
Publikationsjahr: 2023
Ort: Basel
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Energies
Jahrgang/Volume einer Zeitschrift: 16
(Heft-)Nummer: 18
Kollation: 20 Seiten
DOI: 10.3390/en16186687
Zugehörige Links:
Kurzbeschreibung (Abstract):

This paper presents a methodological approach for the evaluation of the thermal behavior of cementitious porous media with/without integrated latent-heat thermal energy storage (LHTES). To achieve this goal, the Lewis-Nielsen model has been calibrated to predict the insulation properties of mineralized foamed concretes. Two pore-related microstructural fitting parameters, A and Φm, are presented according to the available data in the literature. In this regard, new findings are implemented for the classification of pore structure and prediction of the homogenized thermal conductivity of two-phase cementitious foams with or without phase change materials. The calibration and predictive analyses have been extended to a wide range of experimental data, including variation of binder types, porosities, and latent components. The presented analytical approach appears to agree well with experimental results and can be employed in the design of two-phase mineral foam materials. Then, to assess the thermal behavior of the predicted insulating envelopes, a one-dimensional (1D) enthalpy-based model is used which combines Fourier’s law of heat conduction, the first law of thermodynamics, Lewis-Nielsen conductivities, and the mixture theory for LHTES additions. The results demonstrated the importance of volumetric heat capacity for the thermal inertia of building envelopes.

Freie Schlagworte: latent heat thermal energy storage (LHTES), thermal energy storage (TES), porous media, cementitious foam, conductivity prediction, Lewis-Nielsen model, Fourier’s law, dynamic envelopes, energy efficiency
Zusätzliche Informationen:

This article belongs to the Special Issue New Frontiers in Indoor Acoustics and Thermal Comfort for Sustainable Buildings

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 624 Ingenieurbau und Umwelttechnik
Fachbereich(e)/-gebiet(e): 13 Fachbereich Bau- und Umweltingenieurwissenschaften
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut für Statik und Konstruktion
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut IWAR - Wasser- und Abfalltechnik, Umwelt- und Raumplanung
Hinterlegungsdatum: 22 Jan 2024 06:28
Letzte Änderung: 22 Jan 2024 06:28
PPN:
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen