TU Darmstadt / ULB / TUbiblio

The CoronaSurveys System for COVID-19 Incidence Data Collection and Processing

Baquero, Carlos ; Casari, Paolo ; Fernandez Anta, Antonio ; García-García, Amanda ; Frey, Davide ; Garcia-Agundez, Augusto ; Georgiou, Chryssis ; Girault, Benjamin ; Ortega, Antonio ; Goessens, Mathieu ; Hernández-Roig, Harold A. ; Nicolaou, Nicolas ; Stavrakis, Efstathios ; Ojo, Oluwasegun ; Roberts, Julian C. ; Sanchez, Ignacio (2024)
The CoronaSurveys System for COVID-19 Incidence Data Collection and Processing.
In: Frontiers in Computer Science, 2021, 3
doi: 10.26083/tuprints-00022228
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

CoronaSurveys is an ongoing interdisciplinary project developing a system to infer the incidence of COVID-19 around the world using anonymous open surveys. The surveys have been translated into 60 languages and are continuously collecting participant responses from any country in the world. The responses collected are pre-processed, organized, and stored in a version-controlled repository, which is publicly available to the scientific community. In addition, the CoronaSurveys team has devised several estimates computed on the basis of survey responses and other data, and makes them available on the project’s website in the form of tables, as well as interactive plots and maps. In this paper, we describe the computational system developed for the CoronaSurveys project. The system includes multiple components and processes, including the web survey, the mobile apps, the cleaning and aggregation process of the survey responses, the process of storage and publication of the data, the processing of the data and the computation of estimates, and the visualization of the results. In this paper we describe the system architecture and the major challenges we faced in designing and deploying it.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Baquero, Carlos ; Casari, Paolo ; Fernandez Anta, Antonio ; García-García, Amanda ; Frey, Davide ; Garcia-Agundez, Augusto ; Georgiou, Chryssis ; Girault, Benjamin ; Ortega, Antonio ; Goessens, Mathieu ; Hernández-Roig, Harold A. ; Nicolaou, Nicolas ; Stavrakis, Efstathios ; Ojo, Oluwasegun ; Roberts, Julian C. ; Sanchez, Ignacio
Art des Eintrags: Zweitveröffentlichung
Titel: The CoronaSurveys System for COVID-19 Incidence Data Collection and Processing
Sprache: Englisch
Publikationsjahr: 19 Januar 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2021
Ort der Erstveröffentlichung: Lausanne
Verlag: Frontiers Media S.A.
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Frontiers in Computer Science
Jahrgang/Volume einer Zeitschrift: 3
Kollation: 10 Seiten
DOI: 10.26083/tuprints-00022228
URL / URN: https://tuprints.ulb.tu-darmstadt.de/22228
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

CoronaSurveys is an ongoing interdisciplinary project developing a system to infer the incidence of COVID-19 around the world using anonymous open surveys. The surveys have been translated into 60 languages and are continuously collecting participant responses from any country in the world. The responses collected are pre-processed, organized, and stored in a version-controlled repository, which is publicly available to the scientific community. In addition, the CoronaSurveys team has devised several estimates computed on the basis of survey responses and other data, and makes them available on the project’s website in the form of tables, as well as interactive plots and maps. In this paper, we describe the computational system developed for the CoronaSurveys project. The system includes multiple components and processes, including the web survey, the mobile apps, the cleaning and aggregation process of the survey responses, the process of storage and publication of the data, the processing of the data and the computation of estimates, and the visualization of the results. In this paper we describe the system architecture and the major challenges we faced in designing and deploying it.

Freie Schlagworte: COVID-19, monitoring, survey, indirect reporting, visualization, network scale-up method, mobile app
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-222286
Zusätzliche Informationen:

This article is part of the Research Topic Compelling COVID-19 Graphical Simulations

This article was submitted to Human-Media Interaction, a section of the journal Frontiers in Computer Science

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
600 Technik, Medizin, angewandte Wissenschaften > 621.3 Elektrotechnik, Elektronik
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik > Multimedia Kommunikation
Hinterlegungsdatum: 19 Jan 2024 14:13
Letzte Änderung: 12 Mär 2024 09:59
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen