TU Darmstadt / ULB / TUbiblio

Online Learning in Matching Games for Task Offloading in Multi-Access Edge Computing

Mehler, Helena ; Simon, Bernd ; Klein, Anja (2023)
Online Learning in Matching Games for Task Offloading in Multi-Access Edge Computing.
58th International Conference on Communications. Rome, Italy (28.05.2023-01.06.2023)
doi: 10.1109/ICC45041.2023.10279031
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

In multi-access edge computing (MEC), mobile users (MUs) can offload computation tasks to nearby computational resources, which are owned by a mobile network operator (MNO), to save energy. In this work, we investigate two important challenges of task offloading in MEC: (i) The techno-economic interactions of the MNO and the MUs. The MNO faces a profit maximization problem, whereas the MUs face an energy minimization problem. (ii) Limited information at the MUs about the MNO's communication and computation resources and the task offloading strategies of other MUs. To overcome these challenges, we model the task offloading problem as a matching game between the MUs and the MNO including their techno-economic interactions. Furthermore, we propose a novel Collision-Avoidance Task Offloading Multi-Armed-Bandit (CA-TO-MAB) algorithm, that allows the MUs to learn the amount of available resources at the MNO and the task offloading strategies of other MUs in an online, fully decentralized way. We show that by using CA-TO-MAB, the cumulative revenue of the MNO can be increased by 25% and, at the same time the energy consumption of the MUs can be reduced by 6% compared to state-of-the-art online learning algorithms for task offloading. Furthermore, the communication overhead can be reduced by 55% compared to a non-learning game-theoretic approach.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2023
Autor(en): Mehler, Helena ; Simon, Bernd ; Klein, Anja
Art des Eintrags: Bibliographie
Titel: Online Learning in Matching Games for Task Offloading in Multi-Access Edge Computing
Sprache: Englisch
Publikationsjahr: 23 Oktober 2023
Verlag: IEEE
Buchtitel: ICC 2023 - IEEE International Conference on Communications
Veranstaltungstitel: 58th International Conference on Communications
Veranstaltungsort: Rome, Italy
Veranstaltungsdatum: 28.05.2023-01.06.2023
DOI: 10.1109/ICC45041.2023.10279031
Kurzbeschreibung (Abstract):

In multi-access edge computing (MEC), mobile users (MUs) can offload computation tasks to nearby computational resources, which are owned by a mobile network operator (MNO), to save energy. In this work, we investigate two important challenges of task offloading in MEC: (i) The techno-economic interactions of the MNO and the MUs. The MNO faces a profit maximization problem, whereas the MUs face an energy minimization problem. (ii) Limited information at the MUs about the MNO's communication and computation resources and the task offloading strategies of other MUs. To overcome these challenges, we model the task offloading problem as a matching game between the MUs and the MNO including their techno-economic interactions. Furthermore, we propose a novel Collision-Avoidance Task Offloading Multi-Armed-Bandit (CA-TO-MAB) algorithm, that allows the MUs to learn the amount of available resources at the MNO and the task offloading strategies of other MUs in an online, fully decentralized way. We show that by using CA-TO-MAB, the cumulative revenue of the MNO can be increased by 25% and, at the same time the energy consumption of the MUs can be reduced by 6% compared to state-of-the-art online learning algorithms for task offloading. Furthermore, the communication overhead can be reduced by 55% compared to a non-learning game-theoretic approach.

Freie Schlagworte: Open6GHub, emergenCITY, emergenCITY_KOM
Zusätzliche Informationen:

Es handelt sich um Helena Mehlers Bachelorarbeit mit dem Titel „Online Learning of Stable User-Resource Matching in Multi-Access Edge Computing“, sie wurde von Bernd Simon betreut.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Kommunikationstechnik
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
LOEWE
LOEWE > LOEWE-Zentren
LOEWE > LOEWE-Zentren > emergenCITY
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > B: Adaptionsmechanismen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > B: Adaptionsmechanismen > Teilprojekt B3: Adaptionsökonomie
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > C: Kommunikationsmechanismen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > C: Kommunikationsmechanismen > Teilprojekt C1 : Netzzentrische Sicht
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > T: Transferprojekte
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > T: Transferprojekte > Transferprojekt T2: Prädiktion Netzauslastung
Hinterlegungsdatum: 25 Jan 2024 10:58
Letzte Änderung: 02 Mai 2024 08:26
PPN: 517687461
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen