TU Darmstadt / ULB / TUbiblio

Contextual Multi-Armed Bandits for Non-Stationary Heterogeneous Mobile Edge Computing

Wirth, Maximilian ; Ortiz Jimenez, Andrea Patricia ; Klein, Anja (2023)
Contextual Multi-Armed Bandits for Non-Stationary Heterogeneous Mobile Edge Computing.
2023 IEEE Global Communications Conference. Kuala Lumpur, Malaysia (04.12.2023-08.12.2023)
doi: 10.1109/GLOBECOM54140.2023.10437572
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Base station (BS) selection for task offloading in Mobile Edge Computing (MEC) is a challenging problem due to the dynamic nature of MEC systems. The wireless channel as well as the load of BSs are stochastic quantities that can change in a statistically non-stationary fashion. Moreover, the computation capabilities of the BSs are heterogeneous. As the dynamic behaviour of a MEC system is, in practical scenarios, not known in advance, deciding where to offload has to be done under uncertainty about the MEC system and considering its non-stationary and heterogeneous characteristics. This paper in- vestigates latency minimization in MEC with heterogeneous BSs. In order to meet low latency demands, a mobile unit (MU) has to quickly identify the best BS for offloading different computation tasks while facing uncertainty about the non-stationary system dynamics. To solve this problem, we propose a novel piece-wise stationary contextual Multi-Armed Bandit (MAB) algorithm that treats different task types as context and detects non-stationary changes in the BSs’ performance. With the use of extensive simulations, we show that our proposed approach outperforms state-of-the-art algorithms, as it quickly adapts to changes in the MEC system and exhibits no penalty during stationary phases.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2023
Autor(en): Wirth, Maximilian ; Ortiz Jimenez, Andrea Patricia ; Klein, Anja
Art des Eintrags: Bibliographie
Titel: Contextual Multi-Armed Bandits for Non-Stationary Heterogeneous Mobile Edge Computing
Sprache: Englisch
Publikationsjahr: 4 Dezember 2023
Veranstaltungstitel: 2023 IEEE Global Communications Conference
Veranstaltungsort: Kuala Lumpur, Malaysia
Veranstaltungsdatum: 04.12.2023-08.12.2023
DOI: 10.1109/GLOBECOM54140.2023.10437572
URL / URN: https://ieeexplore.ieee.org/abstract/document/10437572
Zugehörige Links:
Kurzbeschreibung (Abstract):

Base station (BS) selection for task offloading in Mobile Edge Computing (MEC) is a challenging problem due to the dynamic nature of MEC systems. The wireless channel as well as the load of BSs are stochastic quantities that can change in a statistically non-stationary fashion. Moreover, the computation capabilities of the BSs are heterogeneous. As the dynamic behaviour of a MEC system is, in practical scenarios, not known in advance, deciding where to offload has to be done under uncertainty about the MEC system and considering its non-stationary and heterogeneous characteristics. This paper in- vestigates latency minimization in MEC with heterogeneous BSs. In order to meet low latency demands, a mobile unit (MU) has to quickly identify the best BS for offloading different computation tasks while facing uncertainty about the non-stationary system dynamics. To solve this problem, we propose a novel piece-wise stationary contextual Multi-Armed Bandit (MAB) algorithm that treats different task types as context and detects non-stationary changes in the BSs’ performance. With the use of extensive simulations, we show that our proposed approach outperforms state-of-the-art algorithms, as it quickly adapts to changes in the MEC system and exhibits no penalty during stationary phases.

Freie Schlagworte: Open6GHub, emergenCITY, emergenCITY_KOM
Zusätzliche Informationen:

Selected Areas in Communications: Cloud/edge Computing, Networking, and Data Storage

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Kommunikationstechnik
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
LOEWE
LOEWE > LOEWE-Zentren
LOEWE > LOEWE-Zentren > emergenCITY
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet
Hinterlegungsdatum: 25 Jan 2024 10:46
Letzte Änderung: 30 Apr 2024 05:51
PPN: 517663546
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen