Dongare, Sumedh ; Ortiz Jimenez, Andrea Patricia ; Klein, Anja (2023)
Federated Deep Reinforcement Learning for Task Participation in Mobile Crowdsensing.
2023 IEEE Global Communications Conference. Kuala Lumpur, Malaysia (04.12.2023-08.12.2023)
doi: 10.1109/GLOBECOM54140.2023.10436786
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
Mobile Crowdsensing (MCS) is a promising distributed sensing architecture that harnesses the power of sensors on mobile units (MUs) to perform sensing tasks. The MCS is a dynamic system in which the requirements of the sensing tasks, the MUs’ conditions and the available resources change over time. The performance of an MCS system depends on the selection of the MUs participating in each sensing task. However, this is not a trivial problem. An optimal task participation strategy requires non-causal knowledge about the dynamic MCS system, a requirement that cannot be fulfilled in real implementations. Moreover, centralized optimization-based approaches do not scale with increasing number of participating MUs and often ignore the MUs’ preferences. To overcome these challenges, in this paper we propose a novel multi-agent federated deep reinforcement learning algorithm (FDRL-PPO) which does not need this perfect non-causal knowledge, but instead, enables the MUs to learn their own task participation strategies based on their own conditions, available resources, and preferences. Through federated learning, the MUs share their learned strategies without disclosing sensitive information, enabling a robust and scalable task participation scheme. Numerical evaluations validate the effectiveness and efficiency of FDRL-PPO in comparison with reference schemes.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2023 |
Autor(en): | Dongare, Sumedh ; Ortiz Jimenez, Andrea Patricia ; Klein, Anja |
Art des Eintrags: | Bibliographie |
Titel: | Federated Deep Reinforcement Learning for Task Participation in Mobile Crowdsensing |
Sprache: | Englisch |
Publikationsjahr: | 6 Dezember 2023 |
Veranstaltungstitel: | 2023 IEEE Global Communications Conference |
Veranstaltungsort: | Kuala Lumpur, Malaysia |
Veranstaltungsdatum: | 04.12.2023-08.12.2023 |
DOI: | 10.1109/GLOBECOM54140.2023.10436786 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | Mobile Crowdsensing (MCS) is a promising distributed sensing architecture that harnesses the power of sensors on mobile units (MUs) to perform sensing tasks. The MCS is a dynamic system in which the requirements of the sensing tasks, the MUs’ conditions and the available resources change over time. The performance of an MCS system depends on the selection of the MUs participating in each sensing task. However, this is not a trivial problem. An optimal task participation strategy requires non-causal knowledge about the dynamic MCS system, a requirement that cannot be fulfilled in real implementations. Moreover, centralized optimization-based approaches do not scale with increasing number of participating MUs and often ignore the MUs’ preferences. To overcome these challenges, in this paper we propose a novel multi-agent federated deep reinforcement learning algorithm (FDRL-PPO) which does not need this perfect non-causal knowledge, but instead, enables the MUs to learn their own task participation strategies based on their own conditions, available resources, and preferences. Through federated learning, the MUs share their learned strategies without disclosing sensitive information, enabling a robust and scalable task participation scheme. Numerical evaluations validate the effectiveness and efficiency of FDRL-PPO in comparison with reference schemes. |
Freie Schlagworte: | Open6GHub, DAAD, emergenCITY, emergenCITY_KOM |
Zusätzliche Informationen: | IoTSN 8: Federated Learning for IoT Networks III |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Kommunikationstechnik DFG-Sonderforschungsbereiche (inkl. Transregio) DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche LOEWE LOEWE > LOEWE-Zentren LOEWE > LOEWE-Zentren > emergenCITY DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > C: Kommunikationsmechanismen DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > C: Kommunikationsmechanismen > Teilprojekt C1 : Netzzentrische Sicht DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > T: Transferprojekte DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > T: Transferprojekte > Transferprojekt T2: Prädiktion Netzauslastung |
Hinterlegungsdatum: | 25 Jan 2024 10:24 |
Letzte Änderung: | 23 Apr 2024 13:22 |
PPN: | 517388979 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |