TU Darmstadt / ULB / TUbiblio

Federated Deep Reinforcement Learning for Task Participation in Mobile Crowdsensing

Dongare, Sumedh ; Ortiz Jimenez, Andrea Patricia ; Klein, Anja (2023)
Federated Deep Reinforcement Learning for Task Participation in Mobile Crowdsensing.
2023 IEEE Global Communications Conference. Kuala Lumpur, Malaysia (04.12.2023-08.12.2023)
doi: 10.1109/GLOBECOM54140.2023.10436786
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Mobile Crowdsensing (MCS) is a promising distributed sensing architecture that harnesses the power of sensors on mobile units (MUs) to perform sensing tasks. The MCS is a dynamic system in which the requirements of the sensing tasks, the MUs’ conditions and the available resources change over time. The performance of an MCS system depends on the selection of the MUs participating in each sensing task. However, this is not a trivial problem. An optimal task participation strategy requires non-causal knowledge about the dynamic MCS system, a requirement that cannot be fulfilled in real implementations. Moreover, centralized optimization-based approaches do not scale with increasing number of participating MUs and often ignore the MUs’ preferences. To overcome these challenges, in this paper we propose a novel multi-agent federated deep reinforcement learning algorithm (FDRL-PPO) which does not need this perfect non-causal knowledge, but instead, enables the MUs to learn their own task participation strategies based on their own conditions, available resources, and preferences. Through federated learning, the MUs share their learned strategies without disclosing sensitive information, enabling a robust and scalable task participation scheme. Numerical evaluations validate the effectiveness and efficiency of FDRL-PPO in comparison with reference schemes.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2023
Autor(en): Dongare, Sumedh ; Ortiz Jimenez, Andrea Patricia ; Klein, Anja
Art des Eintrags: Bibliographie
Titel: Federated Deep Reinforcement Learning for Task Participation in Mobile Crowdsensing
Sprache: Englisch
Publikationsjahr: 6 Dezember 2023
Veranstaltungstitel: 2023 IEEE Global Communications Conference
Veranstaltungsort: Kuala Lumpur, Malaysia
Veranstaltungsdatum: 04.12.2023-08.12.2023
DOI: 10.1109/GLOBECOM54140.2023.10436786
Zugehörige Links:
Kurzbeschreibung (Abstract):

Mobile Crowdsensing (MCS) is a promising distributed sensing architecture that harnesses the power of sensors on mobile units (MUs) to perform sensing tasks. The MCS is a dynamic system in which the requirements of the sensing tasks, the MUs’ conditions and the available resources change over time. The performance of an MCS system depends on the selection of the MUs participating in each sensing task. However, this is not a trivial problem. An optimal task participation strategy requires non-causal knowledge about the dynamic MCS system, a requirement that cannot be fulfilled in real implementations. Moreover, centralized optimization-based approaches do not scale with increasing number of participating MUs and often ignore the MUs’ preferences. To overcome these challenges, in this paper we propose a novel multi-agent federated deep reinforcement learning algorithm (FDRL-PPO) which does not need this perfect non-causal knowledge, but instead, enables the MUs to learn their own task participation strategies based on their own conditions, available resources, and preferences. Through federated learning, the MUs share their learned strategies without disclosing sensitive information, enabling a robust and scalable task participation scheme. Numerical evaluations validate the effectiveness and efficiency of FDRL-PPO in comparison with reference schemes.

Freie Schlagworte: Open6GHub, DAAD, emergenCITY, emergenCITY_KOM
Zusätzliche Informationen:

IoTSN 8: Federated Learning for IoT Networks III

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Kommunikationstechnik
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
LOEWE
LOEWE > LOEWE-Zentren
LOEWE > LOEWE-Zentren > emergenCITY
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > C: Kommunikationsmechanismen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > C: Kommunikationsmechanismen > Teilprojekt C1 : Netzzentrische Sicht
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > T: Transferprojekte
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > T: Transferprojekte > Transferprojekt T2: Prädiktion Netzauslastung
Hinterlegungsdatum: 25 Jan 2024 10:24
Letzte Änderung: 23 Apr 2024 13:22
PPN: 517388979
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen