TU Darmstadt / ULB / TUbiblio

Structure-property relationships in shape memory metallic glass composites

Şopu, Daniel ; Yuan, Xudong ; Moitzi, Franco ; Stoica, Mihai ; Eckert, Jürgen (2019)
Structure-property relationships in shape memory metallic glass composites.
In: Materials, 12 (9)
doi: 10.3390/ma12091419
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Metallic glass composites with shape memory crystals show enhanced plasticity and work-hardening capability. We investigate the influence of various critical structural aspects such as, the density of crystalline precipitates, their distribution and size, and the structural features and intrinsic properties of the phase on the deformation behavior of metallic amorphous Cu₆₄Zr₃₆ composites with B2 CuZr inclusions using molecular dynamics simulations. We find that a low density of small B2 inclusions with spacing smaller than the critical shear band length controls the formation and distribution of plastic zones in the composite and hinders the formation of critical shear bands. When the free path for shearing allows the formation of mature shear bands a high volume fraction of large B2 precipitates is necessary to stabilize the shear flow and avoid runaway instability. Additionally, we also investigate the deformation mechanism of composites with pure copper crystals for comparison, in order to understand the superior mechanical properties of metallic glass composites with shape memory crystals in more detail. The complex and competing mechanisms of deformation occurring in shape memory metallic glass composites allow this class of materials to sustain large tensile deformation, even though only a low-volume fraction of crystalline inclusions is present.

Typ des Eintrags: Artikel
Erschienen: 2019
Autor(en): Şopu, Daniel ; Yuan, Xudong ; Moitzi, Franco ; Stoica, Mihai ; Eckert, Jürgen
Art des Eintrags: Bibliographie
Titel: Structure-property relationships in shape memory metallic glass composites
Sprache: Englisch
Publikationsjahr: 2019
Ort: Basel
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Materials
Jahrgang/Volume einer Zeitschrift: 12
(Heft-)Nummer: 9
Kollation: 10 Seiten
DOI: 10.3390/ma12091419
Zugehörige Links:
Kurzbeschreibung (Abstract):

Metallic glass composites with shape memory crystals show enhanced plasticity and work-hardening capability. We investigate the influence of various critical structural aspects such as, the density of crystalline precipitates, their distribution and size, and the structural features and intrinsic properties of the phase on the deformation behavior of metallic amorphous Cu₆₄Zr₃₆ composites with B2 CuZr inclusions using molecular dynamics simulations. We find that a low density of small B2 inclusions with spacing smaller than the critical shear band length controls the formation and distribution of plastic zones in the composite and hinders the formation of critical shear bands. When the free path for shearing allows the formation of mature shear bands a high volume fraction of large B2 precipitates is necessary to stabilize the shear flow and avoid runaway instability. Additionally, we also investigate the deformation mechanism of composites with pure copper crystals for comparison, in order to understand the superior mechanical properties of metallic glass composites with shape memory crystals in more detail. The complex and competing mechanisms of deformation occurring in shape memory metallic glass composites allow this class of materials to sustain large tensile deformation, even though only a low-volume fraction of crystalline inclusions is present.

Freie Schlagworte: metallic glass composites, shape memory alloys, molecular dynamics, plasticity
Zusätzliche Informationen:

This article belongs to the Special Issue Computational Design of Complex Structural Alloys

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 540 Chemie
600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung
Hinterlegungsdatum: 17 Jan 2024 09:02
Letzte Änderung: 17 Jan 2024 09:02
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen