TU Darmstadt / ULB / TUbiblio

Control Limits for an Adaptive Self-Starting Distribution-Free CUSUM Based on Sequential Ranks

Lang, Michael (2024)
Control Limits for an Adaptive Self-Starting Distribution-Free CUSUM Based on Sequential Ranks.
In: Technologies, 2019, 7 (4)
doi: 10.26083/tuprints-00015748
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Since their introduction in 1954, cumulative sum (CUSUM) control charts have seen a widespread use beyond the conventional realm of statistical process control (SPC). While off-the-shelf implementations aimed at practitioners are available, their successful use is often hampered by inherent limitations which make them not easily reconcilable with real-world scenarios. Challenges commonly arise regarding a lack of robustness due to underlying parametric assumptions or requiring the availability of large representative training datasets. We evaluate an adaptive distribution-free CUSUM based on sequential ranks which is self-starting and provide detailed pseudo-code of a simple, yet effective calibration algorithm. The main contribution of this paper is in providing a set of ready-to-use tables of control limits suitable to a wide variety of applications where a departure from the underlying sampling distribution to a stochastically larger distribution is of interest. Performance of the proposed tabularized control limits is assessed and compared to competing approaches through extensive simulation experiments. The proposed control limits are shown to yield significantly increased agility (reduced detection delay) while maintaining good overall robustness.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Lang, Michael
Art des Eintrags: Zweitveröffentlichung
Titel: Control Limits for an Adaptive Self-Starting Distribution-Free CUSUM Based on Sequential Ranks
Sprache: Englisch
Publikationsjahr: 16 Januar 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2019
Ort der Erstveröffentlichung: Basel
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Technologies
Jahrgang/Volume einer Zeitschrift: 7
(Heft-)Nummer: 4
Kollation: 19 Seiten
DOI: 10.26083/tuprints-00015748
URL / URN: https://tuprints.ulb.tu-darmstadt.de/15748
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Since their introduction in 1954, cumulative sum (CUSUM) control charts have seen a widespread use beyond the conventional realm of statistical process control (SPC). While off-the-shelf implementations aimed at practitioners are available, their successful use is often hampered by inherent limitations which make them not easily reconcilable with real-world scenarios. Challenges commonly arise regarding a lack of robustness due to underlying parametric assumptions or requiring the availability of large representative training datasets. We evaluate an adaptive distribution-free CUSUM based on sequential ranks which is self-starting and provide detailed pseudo-code of a simple, yet effective calibration algorithm. The main contribution of this paper is in providing a set of ready-to-use tables of control limits suitable to a wide variety of applications where a departure from the underlying sampling distribution to a stochastically larger distribution is of interest. Performance of the proposed tabularized control limits is assessed and compared to competing approaches through extensive simulation experiments. The proposed control limits are shown to yield significantly increased agility (reduced detection delay) while maintaining good overall robustness.

Freie Schlagworte: cumulative sums, distribution-free, nonparametric, sequential ranks, change point detection
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-157489
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
Fachbereich(e)/-gebiet(e): Exzellenzinitiative
Exzellenzinitiative > Graduiertenschulen
Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE)
Hinterlegungsdatum: 16 Jan 2024 12:37
Letzte Änderung: 18 Jan 2024 14:22
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen