TU Darmstadt / ULB / TUbiblio

Phonon bridge effect in superlattices of thermoelectric TiNiSn/HfNiSn with controlled interface intermixing

Heinz, Sven ; Angel, Emigdio Chavez ; Trapp, Maximilian ; Kleebe, Hans-Joachim ; Jakob, Gerhard (2020)
Phonon bridge effect in superlattices of thermoelectric TiNiSn/HfNiSn with controlled interface intermixing.
In: Nanomaterials, 10 (6)
doi: 10.3390/nano10061239
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

The implementation of thermal barriers in thermoelectric materials improves their power conversion rates effectively. For this purpose, material boundaries are utilized and manipulated to affect phonon transmissivity. Specifically, interface intermixing and topography represents a useful but complex parameter for thermal transport modification. This study investigates epitaxial thin film multilayers, so called superlattices (SL), of TiNiSn/HfNiSn, both with pristine and purposefully deteriorated interfaces. High-resolution transmission electron microscopy and X-ray diffractometry are used to characterize their structural properties in detail. A differential 3w-method probes their thermal resistivity. The thermal resistivity reaches a maximum for an intermediate interface quality and decreases again for higher boundary layer intermixing. For boundaries with the lowest interface quality, the interface thermal resistance is reduced by 23% compared to a pristine SL. While an uptake of diffuse scattering likely explains the initial deterioration of thermal transport, we propose a phonon bridge interpretation for the lowered thermal resistivity of the interfaces beyond a critical intermixing. In this picture, the locally reduced acoustic contrast of the less defined boundary acts as a mediator that promotes phonon transition.

Typ des Eintrags: Artikel
Erschienen: 2020
Autor(en): Heinz, Sven ; Angel, Emigdio Chavez ; Trapp, Maximilian ; Kleebe, Hans-Joachim ; Jakob, Gerhard
Art des Eintrags: Bibliographie
Titel: Phonon bridge effect in superlattices of thermoelectric TiNiSn/HfNiSn with controlled interface intermixing
Sprache: Englisch
Publikationsjahr: 2020
Ort: Basel
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Nanomaterials
Jahrgang/Volume einer Zeitschrift: 10
(Heft-)Nummer: 6
Kollation: 12 Seiten
DOI: 10.3390/nano10061239
Zugehörige Links:
Kurzbeschreibung (Abstract):

The implementation of thermal barriers in thermoelectric materials improves their power conversion rates effectively. For this purpose, material boundaries are utilized and manipulated to affect phonon transmissivity. Specifically, interface intermixing and topography represents a useful but complex parameter for thermal transport modification. This study investigates epitaxial thin film multilayers, so called superlattices (SL), of TiNiSn/HfNiSn, both with pristine and purposefully deteriorated interfaces. High-resolution transmission electron microscopy and X-ray diffractometry are used to characterize their structural properties in detail. A differential 3w-method probes their thermal resistivity. The thermal resistivity reaches a maximum for an intermediate interface quality and decreases again for higher boundary layer intermixing. For boundaries with the lowest interface quality, the interface thermal resistance is reduced by 23% compared to a pristine SL. While an uptake of diffuse scattering likely explains the initial deterioration of thermal transport, we propose a phonon bridge interpretation for the lowered thermal resistivity of the interfaces beyond a critical intermixing. In this picture, the locally reduced acoustic contrast of the less defined boundary acts as a mediator that promotes phonon transition.

Freie Schlagworte: interface, thermal conductivity, superlattice, intermixing, coherent phonon, roughness, 3 omega, 3 omega method, magnetron sputtering, half-Heusler, thermoelectric, thin film, TiNiSn, HfNiSn, thermal boundary resistance
Zusätzliche Informationen:

This article belongs to the Special Issue Thermal Transport in Nanostructures and Nanomaterials

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
500 Naturwissenschaften und Mathematik > 550 Geowissenschaften
600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften > Fachgebiet Geomaterialwissenschaft
Hinterlegungsdatum: 16 Jan 2024 07:20
Letzte Änderung: 16 Jan 2024 07:20
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen