TU Darmstadt / ULB / TUbiblio

A Low-Complexity Model-Free Approach for Real-Time Cardiac Anomaly Detection Based on Singular Spectrum Analysis and Nonparametric Control Charts

Lang, Michael (2024)
A Low-Complexity Model-Free Approach for Real-Time Cardiac Anomaly Detection Based on Singular Spectrum Analysis and Nonparametric Control Charts.
In: Technologies, 2018, 6 (1)
doi: 10.26083/tuprints-00016950
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

While the importance of continuous monitoring of electrocardiographic (ECG) or photoplethysmographic (PPG) signals to detect cardiac anomalies is generally accepted in preventative medicine, there remain numerous challenges to its widespread adoption. Most notably, difficulties arise regarding crucial characteristics such as real-time capability, computational complexity, the amount of required training data, and the avoidance of too-restrictive modeling assumptions. We propose a lightweight and model-free approach for the online detection of cardiac anomalies such as ectopic beats in ECG or PPG signals on the basis of the change detection capabilities of singular spectrum analysis (SSA) and nonparametric rank-based cumulative sum (CUSUM) control charts. The procedure is able to quickly detect anomalies without requiring the identification of fiducial points such as R-peaks, and it is computationally significantly less demanding than previously proposed SSA-based approaches. Therefore, the proposed procedure is equally well suited for standalone use and as an add-on to complement existing (e.g., heart rate (HR) estimation) procedures.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Lang, Michael
Art des Eintrags: Zweitveröffentlichung
Titel: A Low-Complexity Model-Free Approach for Real-Time Cardiac Anomaly Detection Based on Singular Spectrum Analysis and Nonparametric Control Charts
Sprache: Englisch
Publikationsjahr: 15 Januar 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2018
Ort der Erstveröffentlichung: Basel
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Technologies
Jahrgang/Volume einer Zeitschrift: 6
(Heft-)Nummer: 1
Kollation: 24 Seiten
DOI: 10.26083/tuprints-00016950
URL / URN: https://tuprints.ulb.tu-darmstadt.de/16950
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

While the importance of continuous monitoring of electrocardiographic (ECG) or photoplethysmographic (PPG) signals to detect cardiac anomalies is generally accepted in preventative medicine, there remain numerous challenges to its widespread adoption. Most notably, difficulties arise regarding crucial characteristics such as real-time capability, computational complexity, the amount of required training data, and the avoidance of too-restrictive modeling assumptions. We propose a lightweight and model-free approach for the online detection of cardiac anomalies such as ectopic beats in ECG or PPG signals on the basis of the change detection capabilities of singular spectrum analysis (SSA) and nonparametric rank-based cumulative sum (CUSUM) control charts. The procedure is able to quickly detect anomalies without requiring the identification of fiducial points such as R-peaks, and it is computationally significantly less demanding than previously proposed SSA-based approaches. Therefore, the proposed procedure is equally well suited for standalone use and as an add-on to complement existing (e.g., heart rate (HR) estimation) procedures.

Freie Schlagworte: nonparametric change point detection, singular spectrum analysis, cumulative sums, ECG, PPG, arrhythmias, cardiac monitoring
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-169507
Zusätzliche Informationen:

This article belongs to the Special Issue Physiological Monitoring Technologies

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
Fachbereich(e)/-gebiet(e): Exzellenzinitiative
Exzellenzinitiative > Graduiertenschulen
Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE)
Hinterlegungsdatum: 15 Jan 2024 14:16
Letzte Änderung: 18 Jan 2024 14:22
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen