TU Darmstadt / ULB / TUbiblio

PEO Infiltration of Porous Garnet-Type Lithium-Conducting Solid Electrolyte Thin Films

Waidha, Aamir Iqbal ; Vanita, Vanita ; Clemens, Oliver (2024)
PEO Infiltration of Porous Garnet-Type Lithium-Conducting Solid Electrolyte Thin Films.
In: Ceramics, 2021, 4 (3)
doi: 10.26083/tuprints-00019523
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Composite electrolytes containing lithium ion conducting polymer matrix and ceramic filler are promising solid-state electrolytes for all solid-state lithium ion batteries due to their wide electrochemical stability window, high lithium ion conductivity and low electrode/electrolyte interfacial resistance. In this study, we report on the polymer infiltration of porous thin films of aluminum-doped cubic garnet fabricated via a combination of nebulized spray pyrolysis and spin coating with subsequent post annealing at 1173 K. This method offers a simple and easy route for the fabrication of a three-dimensional porous garnet network with a thickness in the range of 50 to 100 µm, which could be used as the ceramic backbone providing a continuous pathway for lithium ion transport in composite electrolytes. The porous microstructure of the fabricated thin films is confirmed via scanning electron microscopy. Ionic conductivity of the pristine films is determined via electrochemical impedance spectroscopy. We show that annealing times have a significant impact on the ionic conductivity of the films. The subsequent polymer infiltration of the porous garnet films shows a maximum ionic conductivity of 5.3 × 10⁻⁷ S cm⁻¹ at 298 K, which is six orders of magnitude higher than the pristine porous garnet film.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Waidha, Aamir Iqbal ; Vanita, Vanita ; Clemens, Oliver
Art des Eintrags: Zweitveröffentlichung
Titel: PEO Infiltration of Porous Garnet-Type Lithium-Conducting Solid Electrolyte Thin Films
Sprache: Englisch
Publikationsjahr: 15 Januar 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2021
Ort der Erstveröffentlichung: Basel
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Ceramics
Jahrgang/Volume einer Zeitschrift: 4
(Heft-)Nummer: 3
DOI: 10.26083/tuprints-00019523
URL / URN: https://tuprints.ulb.tu-darmstadt.de/19523
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Composite electrolytes containing lithium ion conducting polymer matrix and ceramic filler are promising solid-state electrolytes for all solid-state lithium ion batteries due to their wide electrochemical stability window, high lithium ion conductivity and low electrode/electrolyte interfacial resistance. In this study, we report on the polymer infiltration of porous thin films of aluminum-doped cubic garnet fabricated via a combination of nebulized spray pyrolysis and spin coating with subsequent post annealing at 1173 K. This method offers a simple and easy route for the fabrication of a three-dimensional porous garnet network with a thickness in the range of 50 to 100 µm, which could be used as the ceramic backbone providing a continuous pathway for lithium ion transport in composite electrolytes. The porous microstructure of the fabricated thin films is confirmed via scanning electron microscopy. Ionic conductivity of the pristine films is determined via electrochemical impedance spectroscopy. We show that annealing times have a significant impact on the ionic conductivity of the films. The subsequent polymer infiltration of the porous garnet films shows a maximum ionic conductivity of 5.3 × 10⁻⁷ S cm⁻¹ at 298 K, which is six orders of magnitude higher than the pristine porous garnet film.

Freie Schlagworte: lithium ion batteries, garnet, thin films, composite electrolyte
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-195236
Zusätzliche Informationen:

This article belongs to the Special Issue Innovative Processing Routes for Electroactive Materials

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialdesign durch Synthese
Hinterlegungsdatum: 15 Jan 2024 13:38
Letzte Änderung: 16 Jan 2024 07:33
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen