TU Darmstadt / ULB / TUbiblio

Genetic Algorithms to Maximize the Relevant Mutual Information in Communication Receivers

Lewandowsky, Jan ; Dongare, Sumedh Jitendra ; Martín Lima, Rocío ; Adrat, Marc ; Schrammen, Matthias ; Jax, Peter (2024)
Genetic Algorithms to Maximize the Relevant Mutual Information in Communication Receivers.
In: Electronics, 2021, 10 (12)
doi: 10.26083/tuprints-00019542
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

The preservation of relevant mutual information under compression is the fundamental challenge of the information bottleneck method. It has many applications in machine learning and in communications. The recent literature describes successful applications of this concept in quantized detection and channel decoding schemes. The focal idea is to build receiver algorithms intended to preserve the maximum possible amount of relevant information, despite very coarse quantization. The existent literature shows that the resulting quantized receiver algorithms can achieve performance very close to that of conventional high-precision systems. Moreover, all demanding signal processing operations get replaced with lookup operations in the considered system design. In this paper, we develop the idea of maximizing the preserved relevant information in communication receivers further by considering parametrized systems. Such systems can help overcome the need of lookup tables in cases where their huge sizes make them impractical. We propose to apply genetic algorithms which are inspired from the natural evolution of the species for the problem of parameter optimization. We exemplarily investigate receiver-sided channel output quantization and demodulation to illustrate the notable performance and the flexibility of the proposed concept.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Lewandowsky, Jan ; Dongare, Sumedh Jitendra ; Martín Lima, Rocío ; Adrat, Marc ; Schrammen, Matthias ; Jax, Peter
Art des Eintrags: Zweitveröffentlichung
Titel: Genetic Algorithms to Maximize the Relevant Mutual Information in Communication Receivers
Sprache: Englisch
Publikationsjahr: 15 Januar 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2021
Ort der Erstveröffentlichung: Basel
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Electronics
Jahrgang/Volume einer Zeitschrift: 10
(Heft-)Nummer: 12
Kollation: 21 Seiten
DOI: 10.26083/tuprints-00019542
URL / URN: https://tuprints.ulb.tu-darmstadt.de/19542
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

The preservation of relevant mutual information under compression is the fundamental challenge of the information bottleneck method. It has many applications in machine learning and in communications. The recent literature describes successful applications of this concept in quantized detection and channel decoding schemes. The focal idea is to build receiver algorithms intended to preserve the maximum possible amount of relevant information, despite very coarse quantization. The existent literature shows that the resulting quantized receiver algorithms can achieve performance very close to that of conventional high-precision systems. Moreover, all demanding signal processing operations get replaced with lookup operations in the considered system design. In this paper, we develop the idea of maximizing the preserved relevant information in communication receivers further by considering parametrized systems. Such systems can help overcome the need of lookup tables in cases where their huge sizes make them impractical. We propose to apply genetic algorithms which are inspired from the natural evolution of the species for the problem of parameter optimization. We exemplarily investigate receiver-sided channel output quantization and demodulation to illustrate the notable performance and the flexibility of the proposed concept.

Freie Schlagworte: information bottleneck, mutual information, genetic algorithms, machine learning
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-195429
Zusätzliche Informationen:

This article belongs to the Special Issue Selected Papers from 14th International Conference on Signal Processing and Communication Systems.

This article is an extended and improved version of our paper published in: Lewandowsky, J.; Dongare, S.J.; Adrat, M.; Schrammen, M.; Jax, P. Optimizing parametrized information bottleneck compression mappings with genetic algorithms. In Proceedings of the 14th International Conference on Signal Processing and Communication Systems (ICSPCS’2020), Adelaide, Australia, 14–16 December 2020; pp. 1–8.

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 621.3 Elektrotechnik, Elektronik
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Kommunikationstechnik
Hinterlegungsdatum: 15 Jan 2024 13:34
Letzte Änderung: 26 Feb 2024 16:18
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen