TU Darmstadt / ULB / TUbiblio

Bulk nanostructured silicide thermoelectric materials by reversible hydrogen absorption-desorption

Dirba, Imants ; Ablets, Yevhen ; Skokov, Konstantin P. ; Adabifiroozjaei, Esmaeil ; Molina‐Luna, Leopoldo ; Gutfleisch, Oliver (2023)
Bulk nanostructured silicide thermoelectric materials by reversible hydrogen absorption-desorption.
In: Small
doi: 10.1002/smll.202208098
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The production of bulk nanostructured silicide thermoelectric materials by a reversible hydrogen absorption–desorption process is demonstrated. Here, high-pressure reactive milling under 100 bar hydrogen is used to decompose the Ca2Si phase into CaH2 and Si. Subsequent vacuum heat treatment results in hydrogen desorption and recombination of the constituents into the original phase. By changing the heat treatment temperature, recombination into Ca2Si or Ca5Si3 can be achieved. Most importantly, the advanced synthesis process enables drastic and simple microstructure refinement by more than two orders of magnitude, from a grain size of around 50 µm in the initial ingot to 100–200 nm after the hydrogen absorption–desorption process. Fine precipitates with sizes ranging from 10–50 nm are forming coherently inside the grains. Thus, the route is promising and can be used for reducing thermal conductivity due to phonon scattering from grain boundaries as well as through nanostructuring with second-phase precipitates. Moreover, the process is environmentally friendly since hydrogen is reversibly absorbed, desorbed, and can be fully recovered.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Dirba, Imants ; Ablets, Yevhen ; Skokov, Konstantin P. ; Adabifiroozjaei, Esmaeil ; Molina‐Luna, Leopoldo ; Gutfleisch, Oliver
Art des Eintrags: Bibliographie
Titel: Bulk nanostructured silicide thermoelectric materials by reversible hydrogen absorption-desorption
Sprache: Englisch
Publikationsjahr: 10 Dezember 2023
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Small
DOI: 10.1002/smll.202208098
Kurzbeschreibung (Abstract):

The production of bulk nanostructured silicide thermoelectric materials by a reversible hydrogen absorption–desorption process is demonstrated. Here, high-pressure reactive milling under 100 bar hydrogen is used to decompose the Ca2Si phase into CaH2 and Si. Subsequent vacuum heat treatment results in hydrogen desorption and recombination of the constituents into the original phase. By changing the heat treatment temperature, recombination into Ca2Si or Ca5Si3 can be achieved. Most importantly, the advanced synthesis process enables drastic and simple microstructure refinement by more than two orders of magnitude, from a grain size of around 50 µm in the initial ingot to 100–200 nm after the hydrogen absorption–desorption process. Fine precipitates with sizes ranging from 10–50 nm are forming coherently inside the grains. Thus, the route is promising and can be used for reducing thermal conductivity due to phonon scattering from grain boundaries as well as through nanostructuring with second-phase precipitates. Moreover, the process is environmentally friendly since hydrogen is reversibly absorbed, desorbed, and can be fully recovered.

Zusätzliche Informationen:

Artikel-ID: 2208098

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Elektronenmikroskopie
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Funktionale Materialien
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1245: Atomkerne von fundamentalen Wechselwirkungen zu Struktur und Sternen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1487: Eisen, neu gedacht!
Hinterlegungsdatum: 15 Jan 2024 12:59
Letzte Änderung: 27 Sep 2024 05:53
PPN: 514766093
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen