TU Darmstadt / ULB / TUbiblio

Model-based spindle bearing monitoring using vibration sensors and artificial neural networks

Elling, Magnus von ; Weber, Markus ; Berchtenbreiter, Viktor ; Weigold, Matthias
Hrsg.: Bauernhansl, Thomas ; Verl, Alexander ; Liewald, Mathias ; Möhring, Hans-Christian (2024)
Model-based spindle bearing monitoring using vibration sensors and artificial neural networks.
13th Congress of the German Academic Association for Production Technology (WGP). Freudenstadt (20.11.2023-23.11.2023)
doi: 10.1007/978-3-031-47394-4_25
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

To ensure the longevity of the bearings of a motor spindle, it is advantageous to know the precise loads on the bearings during operation. Since sensor-based monitoring involves a great deal of effort due to the limited space available, and simulating the bearing load is not real-time capable, we investigated how the bearing loads can be estimated using machine learning methods. To estimate the bearing load, a co-simulation was first set up that generates large amounts of training data based on measured cutting forces and spindle vibration velocities. Measured and simulated quantities are then used to train artificial neural networks. The best-performing neural networks can estimate the surface pressure between rolling elements and bearing rings with an error of less than 2%. This deviation refers to the contact stress that was calculated for comparison with the simulation results.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2024
Herausgeber: Bauernhansl, Thomas ; Verl, Alexander ; Liewald, Mathias ; Möhring, Hans-Christian
Autor(en): Elling, Magnus von ; Weber, Markus ; Berchtenbreiter, Viktor ; Weigold, Matthias
Art des Eintrags: Bibliographie
Titel: Model-based spindle bearing monitoring using vibration sensors and artificial neural networks
Sprache: Englisch
Publikationsjahr: 2024
Ort: Cham
Verlag: Springer
Buchtitel: Production at the leading edge of technology : proceedings of the 13th Congress of the German Academic Association for Production Technology (WGP)
Reihe: Lecture Notes in Production Engineering
Veranstaltungstitel: 13th Congress of the German Academic Association for Production Technology (WGP)
Veranstaltungsort: Freudenstadt
Veranstaltungsdatum: 20.11.2023-23.11.2023
DOI: 10.1007/978-3-031-47394-4_25
URL / URN: https://link.springer.com/chapter/10.1007/978-3-031-47394-4_...
Kurzbeschreibung (Abstract):

To ensure the longevity of the bearings of a motor spindle, it is advantageous to know the precise loads on the bearings during operation. Since sensor-based monitoring involves a great deal of effort due to the limited space available, and simulating the bearing load is not real-time capable, we investigated how the bearing loads can be estimated using machine learning methods. To estimate the bearing load, a co-simulation was first set up that generates large amounts of training data based on measured cutting forces and spindle vibration velocities. Measured and simulated quantities are then used to train artificial neural networks. The best-performing neural networks can estimate the surface pressure between rolling elements and bearing rings with an error of less than 2%. This deviation refers to the contact stress that was calculated for comparison with the simulation results.

Freie Schlagworte: condition monitoring, machine learning, motor spindle
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW)
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW) > TEC Fertigungstechnologie
Hinterlegungsdatum: 15 Jan 2024 09:54
Letzte Änderung: 23 Aug 2024 11:45
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen